Turdus rufiventris and Turdus albicollis, two songbirds belonging to the family Turdidae (Aves, Passeriformes) were studied by C-banding, 18S rDNA, as well as the use of whole chromosome probes derived from Gallus gallus (GGA) and Leucopternis albicollis (LAL). They showed very similar karyotypes, with 2n = 78 and the same pattern of distribution of heterochromatic blocks and hybridization patterns. However, the analysis of 18/28S rDNA has shown differences in the number of NOR-bearing chromosomes and ribosomal clusters. The hybridization pattern of GGA macrochromosomes was similar to the one found in songbirds studied by Fluorescent in situ hybridization, with fission of GGA 1 and GGA 4 chromosomes. In contrast, LAL chromosome paintings revealed a complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) on chromosome 2, which corresponds to GGA1q. The first inversion changed the chromosomal morphology and the second and third inversions changed the order of chromosome segments. Karyotype analysis in Turdus revealed that this genus has derived characteristics in relation to the putative avian ancestral karyotype, highlighting the importance of using new tools for analysis of chromosomal evolution in birds, such as the probes derived from L. albicollis, which make it possible to identify intrachromosomal rearrangements not visible with the use of GGA chromosome painting solely.
birdchromosomedatabase) we have compiled data on the chromosome numbers of 1,067 bird species and chromosome painting data on 96 species. We found considerable variation in the diploid numbers, which ranged from 40 to 142, although most (around 50%) of the species studied up to now have between 78 and 82 chromosomes. Despite its importance for cytogenetic research, chromosome painting has been applied to less than 1% of all bird species. The BCD will enable researchers to identify the main knowledge gaps in bird cytogenetics, including the most under-sampled groups, and make inferences on chromosomal homologies in phylogenetic studies. © 2020 S. Karger AG, BaselDatabases present a valuable source of information for research on a wide range of topics, including species inventories, cytogenetics of some key groups, chromosomal mapping of rDNA, and even complete genomic sequences [Peruzzi and Bedini, 2014;Jarvis et al., 2015;Cardoso et al., 2018;Gill and Donsker, 2018; Paresque et al., AbstractBird chromosomes, which have been investigated scientifically for more than a century, present a number of unique features. In general, bird karyotypes have a high diploid number (2n) of typically around 80 chromosomes that are divided into macro-and microchromosomes. In recent decades, FISH studies using whole chromosome painting probes have shown that the macrochromosomes evolved through both inter-and intrachromosomal rearrangements. However, chromosome painting data are available for only a few bird species, which hinders a more systematic approach to the understanding of the evolutionary history of the enigmatic bird karyotype. Thus, we decided to create an innovative database through compilation of the cytogenetic data available for birds, including chromosome numbers and the results of chromosome painting with chicken ( Gallus gallus ) probes. The data were obtained through an extensive literature review, which focused on cytogenetic studies published
Saltator is a genus within family Thraupidae, the second largest family of Passeriformes, with more than 370 species found exclusively in the New World. Despite this, only a few species have had their karyotypes analyzed, most of them only with conventional staining. The diploid number is close to 80, and chromosome morphology is similar to the usual avian karyotype. Recent studies using cross-species chromosome painting have shown that, although the chromosomal morphology and number are similar to many species of birds, Passeriformes exhibit a complex pattern of paracentric and pericentric inversions in the chromosome homologous to GGA1q in two different suborders, Oscines and Suboscines. Hence, considering the importance and species richness of Thraupidae, this study aims to analyze two species of genus Saltator, the golden-billed saltator (S. aurantiirostris) and the green-winged saltator (S. similis) by means of classical cytogenetics and cross-species chromosome painting using Gallus gallus and Leucopternis albicollis probes, and also 5S and 18S rDNA and telomeric sequences. The results show that the karyotypes of these species are similar to other species of Passeriformes. Interestingly, the Z chromosome appears heteromorphic in S. similis, varying in morphology from acrocentric to metacentric. 5S and 18S probes hybridize to one pair of microchromosomes each, and telomeric sequences produce signals only in the terminal regions of chromosomes. FISH results are very similar to the Passeriformes already analyzed by means of molecular cytogenetics (Turdus species and Elaenia spectabilis). However, the paracentric and pericentric inversions observed in Saltator are different from those detected in these species, an observation that helps to explain the probable sequence of rearrangements. As these rearrangements are found in both suborders of Passeriformes (Oscines and Suboscines), we propose that the fission of GGA1 and inversions in GGA1q have occurred very early after the radiation of this order.
Among birds, Tyrannidae comprises one of the most diverse and species‐rich families. Although cytogenetic data have shown interesting results in this family, such as variations in the macrochromosome morphology and diploid number, only a few species have had their karyotypes described. In the present study, we report the characterization of the karyotype of Elaenia spectabilis (Passeriformes, Tyrannidae) by means of classical and molecular cytogenetics. The results show that syntenic groups of Gallus gallus (GGA) were conserved, except GGA1 and GGA4, which were divided into two different pairs each. However, the results obtained with Leucopternis albicollis probes revealed the occurrence of inversions in segments homologous to GGA1q, similar to those observed in other Passerifomes (Turdus), and one inversion in GGA1p. These results suggest that the centric fission in GGA1, as well as the inversions observed in segments homologous to GGA1q, appeared in the early history of Passeriformes because they could be detected in Oscine and Suboscine species. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115, 391–398.
The Southern lapwing (Vanellus chilensis) is endemic to America and is well-known because of the vast expansion of its geographical distribution and its involvement in air accidents. Despite its popularity, there is no information concerning the genomic organization and karyotype of this species. Hence, because other species of the genus Vanellus have variable diploid numbers from 2n = 58 to 76, the aim of this report was to analyze the karyotype of V. chilensis by means of classical and molecular cytogenetics. We found that 2n = 78 and chromosome painting using probes of Gallus gallus (GGA) and Leucopternis albicollis revealed an organization similar to the avian putative ancestral karyotype, except for the fusion of GGA7 and GGA8, also found in Burhinus oedicnemus, the only Charadriiforme species analyzed by FISH so far. This rearrangement may represent a cytogenetic signature for this group and, in addition, must be responsible for the difference between the diploid number found in the avian putative ancestral karyotype (2n = 80) and V. chilensis (2n = 78).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.