Background: Obstructive sleep apnea (OSA) is a very prevalent disorder. Here, we aimed to develop and validate a practical questionnaire with yes-or-no answers, and to compare its performance with other well-validated instruments: No-Apnea, STOP-Bang, and NoSAS. Methods: A cross-sectional study containing consecutively selected sleep-lab subjects underwent full polysomnography. A 4-item model, named GOAL questionnaire (gender, obesity, age, and loud snoring), was developed and subsequently validated, with item-scoring of 0-4 points (≥2 points indicating high risk for OSA). Discrimination was assessed by area under the curve (AUC), while predictive parameters were calculated using contingency tables. OSA severity was classified based on conventionally accepted apnea/hypopnea index thresholds: ≥5.0/h (OSA ≥5), ≥15.0/h (OSA ≥15), and ≥30.0/h (OSA ≥30). Results: Overall, 7377 adults were grouped into two large and independent cohorts: derivation (n = 3771) and validation (n = 3606). In the derivation cohort, screening of OSA ≥5 , OSA ≥15 , and OSA ≥30 revealed that GOAL questionnaire achieved sensitivity ranging from 83.3% to 94.0% and specificity ranging from 62.4% to 38.5%. In the validation cohort, screening of OSA ≥5 , OSA ≥15 , and OSA ≥30 , corroborated validation steps with sensitivity ranging from 83.7% to 94.2% and specificity from 63.4% to 37.7%. In both cohorts, discriminatory ability of GOAL questionnaire for screening of OSA ≥5 , OSA ≥15 , and OSA ≥30 was similar to No-Apnea, STOP-Bang or NoSAS. Conclusion: All four instruments had similar performance, leading to a possible greater practical implementation of the GOAL questionnaire, a simple instrument with only four parameters easily obtained during clinical evaluation.
Objective:To validate the Portuguese-language version of the STOP-Bang (acronym for Snoring, Tiredness, Observed apnea, high blood Pressure, Body mass index, Age, Neck circumference, and Gender) questionnaire, culturally adapted for use in Brazil, as a means of screening for obstructive sleep apnea (OSA) in adults. Methods:In this validation study, we enrolled patients ≥ 18 years of age, recruited between May of 2015 and November of 2016. All patients completed the STOP-Bang questionnaire and underwent overnight polysomnography. To evaluate the performance of the questionnaire, we used contingency tables and areas under the (receiver operating characteristic) curve (AUCs). Results:We included 456 patients. The mean age was 43.7 ± 12.5 years, and 291 (63.8%) of the patients were male. On the basis of the apnea-hypopnea index (AHI), we categorized OSA as mild/moderate/severe (any OSA; AHI ≥ 5 events/h), moderate/severe (AHI ≥ 15 events/h), or severe (AHI ≥ 30 events/h). The overall prevalence of OSA was 78.3%, compared with 52.0%, and 28.5% for moderate/severe and severe OSA, respectively. The most common score on the STOP-Bang questionnaire was 4 points (n = 106), followed by 3 points (n = 85) and 5 points (n = 82). An increase in the score was paralleled by a reduction in sensitivity with a corresponding increase in specificity for all AHI cut-off points. The AUCs obtained for the identification of any, moderate/severe, and severe OSA were: 0.743, 0.731, and 0.779, respectively. For any OSA, the score on the questionnaire (cut-off, ≥ 3 points) presented sensitivity, specificity, and accuracy of 83.5%, 45.5%, and 75.2%, respectively. Conclusions:The STOP-Bang questionnaire performed adequately for OSA screening, indicating that it could be used as an effective screening tool for the disorder.
Objective: To identify the main predictive factors for obtaining a diagnosis of obstructive sleep apnea (OSA) in patients awaiting bariatric surgery. Methods: Retrospective study of consecutive patients undergoing pre-operative evaluation for bariatric surgery and referred for in-laboratory polysomnography. Eight variables were evaluated: sex, age, neck circumference (NC), BMI, Epworth Sleepiness Scale (ESS) score, snoring, observed apnea, and hypertension. We employed ROC curve analysis to determine the best cut-off value for each variable and multiple linear regression to identify independent predictors of OSA severity. Results: We evaluated 1,089 patients, of whom 781 (71.7%) were female. The overall prevalence of OSA-defined as an apnea/hypopnea index (AHI) ≥ 5.0 events/h-was 74.8%. The best cut-off values for NC, BMI, age, and ESS score were 42 cm, 42 kg/m2, 37 years, and 10 points, respectively. All eight variables were found to be independent predictors of a diagnosis of OSA in general, and all but one were found to be independent predictors of a diagnosis of moderate/severe OSA (AHI ≥ 15.0 events/h), the exception being hypertension. We devised a 6-item model, designated the NO-OSAS model (NC, Obesity, Observed apnea, Snoring, Age, and Sex), with a cut-off value of ≥ 3 for identifying high-risk patients. For a diagnosis of moderate/severe OSA, the model showed 70.8% accuracy, 82.8% sensitivity, and 57.9% specificity. Conclusions: In our sample of patients awaiting bariatric surgery, there was a high prevalence of OSA. At a cut-off value of ≥ 3, the proposed 6-item model showed good accuracy for a diagnosis of moderate/severe OSA.
Purpose Obstructive sleep apnea (OSA) is very common occurrence among morbidly obese patients. Our main objectives were to validate the No-Apnea, a 2-item screening tool, in morbidly obese patients and compare its performance with three other instruments: STOP-Bang questionnaire, NoSAS score, and Epworth Sleepiness Scale (ESS). Methods A cross-sectional analysis of morbidly obese patients (body mass index [BMI] ≥ 35.0 kg/m 2 ) grouped into two independent samples: bariatric surgery patients (BS) and non-bariatric surgery patients (NBS). All patients underwent overnight polysomnography. Discriminatory ability was assessed by area under the curve (AUC). OSA severity was defined by apnea/ hypopnea index cut-off points: ≥ 5.0/h (OSA ≥5 ), ≥ 15.0/h (OSA ≥15 ), and ≥ 30.0/h (OSA ≥30 ). Results A total of 1017 subjects (40.4% in BS cohort and 59.6% in NBS cohort) were evaluated. In the BS cohort, No-Apnea had similar discrimination to STOP-Bang and NoSAS for predicting OSA ≥5 (p = 0.979 and p = 0.358, respectively), OSA ≥15 (p = 0.158 and p = 0.399, respectively), and OSA ≥30 (p = 0.388 and p = 0.903, respectively). In the NBS cohort, No-Apnea had similar discrimination to STOP-Bang and NoSAS for predicting OSA ≥5 (p = 0.528 and p = 0.428, respectively), OSA ≥15 (p = 0.825 and p = 0.108, respectively), and OSA ≥30 (p = 0.458 and p = 0.186, respectively). Moreover, No-Apnea performed significantly better than ESS in both BS and NBS cohorts (p < 0.001). Conclusions No-Apnea is a useful and practical tool for screening of OSA in morbidly obese patients, with non-inferior performance to STOP-Bang questionnaire and NoSAS score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.