Blue‐light‐emitting diodes made of polyfluorenes have low stability and, under operation, rapidly degrade and produce undesirable low‐energy emission bands (green or g‐bands). A spectroelectrochemical study of the degradation process suffered by polyfluorenes is reported here. These polymers lose their electronic properties by electrochemical oxidation and reduction through σ‐bond breaking. In addition, upon electrochemical reduction, the development of a structured green emission band at 485 nm is observed. The position and shape of this band is different from the usual featureless band at 535 nm assigned to fluorenone defects. The green‐light‐emitting product is isolated and analyzed by Fourier‐transform IR spectroscopy; fluorenone formation is excluded. The isolated product is crosslinked; its green emission is probably related to the formation of an intramolecular excimer.
The interaction between three poly(9,9-bis(6-N,N,N-trimethylammonium)hexyl)fluorene phenylene) bromide (HTMA-PFP) samples of different molecular weights (M n ) 14.5, 30.1 and 61.3 kg/mol) and both dsDNA and ssDNA secondary structures has been studied using UV-visible absorption and fluorescence spectroscopies (including steady-state, time-resolved, and anisotropy measurements for the latter), viscosity, and electrical conductivity in 4% (v/v) DMSO-water mixtures. At low nucleic acid concentrations, formation of a 1:1 complex in terms of HTMA-PFP repeat units and DNA bases occurs. This interaction results in quenching of polymer emission. For higher molar ratios of DNA to HTMA-PFP, corresponding to charge neutralization, a second process is observed that is attributed to aggregate formation. From the changes in the absorption spectra, the polymer aggregation constant and the aggregate absorption spectra were calculated by applying an iterative method. Polymer aggregation dramatically quenches HTMA-PFP fluorescence in the region of the electroneutrality point. Under these conditions, the ratio of the emission intensity at 412 nm (maximum) to that at 434 nm (I 412 /I 434 ) reaches a minimum, the electrical conductivity decreases, and the viscosity of the solution remains constant, showing that the DNA concentration can be determined through various HTMA-PFP physicochemical properties. With respect to the photophysical parameters (emission quantum yield, shape and shift of emission spectra), no significant differences were observed between dsDNA and ssDNA or with conjugated polymer or DNA molecular weight. The two short-lived components in the fluorescence decays are attributed to the presence of aggregates. Aggregates are also suggested to be responsible for the decrease in the fluorescence anisotropy through interchain exciton migration.
The interaction between the cationic HTMA-PFP (Poly-(9,9-bis(6′-N,N,N-trimethylammonium)hexyl-fluorene phenylene) bromide) and oppositely charged sodium n-alkyl sulfonate surfactants of different chain lengths has been studied in DMSO-water solutions (4% v/v) by UV-visible absorption, fluorescence spectroscopy, fluorescence lifetimes, electrical conductivity, and 1 H NMR spectroscopy. Polymer-surfactant interactions lead to complex spectroscopic behaviors which depends on surfactant concentration. At low surfactant concentrations, the observed strong static fluorescence quenching of fluorescence seems to be associated with formation of aggregates between polymer chains neutralized through interaction with surfactants. This is supported by conductivity and by analysis of absorption spectra deconvoluted at each surfactant concentration using an adapted iterative method. In contrast, above the surfactant critical micelle concentration, there is a strong fluorescence enhancement, leading in some cases to higher intensities than in the absence of surfactants. This is attributed to the transformation of the initially formed aggregates into some new aggregate species involving surfactant and polymer. These changes in HTMA-PFP fluorescence as a function of n-alkyl sulfonate concentration are important for the general understanding of polymer-surfactant interactions, and the aggregates formed may be important as novel systems for applications of these conjugated polyelectrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.