Abstract. We present an efficient algorithm to reduce the size of nondeterministic tree automata, while retaining their language. It is based on new transition pruning techniques, and quotienting of the state space w.r.t. suitable equivalences. It uses criteria based on combinations of downward and upward simulation preorder on trees, and the more general downward and upward language inclusions. Since tree-language inclusion is EXPTIME-complete, we describe methods to compute good approximations in polynomial time. We implemented our algorithm as a module of the well-known libvata tree automata library, and tested its performance on a given collection of tree automata from various applications of libvata in regular model checking and shape analysis, as well as on various classes of randomly generated tree automata. Our algorithm yields substantially smaller and sparser automata than all previously known reduction techniques, and it is still fast enough to handle large instances.
Kleene algebra with tests (KAT) is an equational system for program verification, which is the combination of Boolean algebra (BA) and Kleene algebra (KA), the algebra of regular expressions. In particular, KAT subsumes the propositional fragment of Hoare logic (PHL) which is a formal system for the specification and verification of programs, and that is currently the base of most tools for checking program correctness. Both the equational theory of KAT and the encoding of PHL in KAT are known to be decidable. In this paper we present a new decision procedure for the equivalence of two KAT expressions based on the notion of partial derivatives. We also introduce the notion of derivative modulo particular sets of equations. With this we extend the previous procedure for deciding PHL. Some experimental results are also presented
We introduce saturation of nondeterministic tree automata, a technique that adds new transitions to an automaton while preserving its language. We implemented our algorithm on minotaut -a module of the tree automata library libvata that reduces the size of automata by merging states and removing superfluous transitions -and we show how saturation can make subsequent merge and transition-removal operations more effective. Thus we obtain a Ptime algorithm that reduces the size of tree automata even more than before. Additionally, we explore how minotaut alone can play an important role when performing hard operations like complementation, allowing to both obtain smaller complement automata and lower computation times. We then show how saturation can extend this contribution even further. We tested our algorithms on a large collection of automata from applications of libvata in shape analysis, and on different classes of randomly generated automata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.