Variable Mesh Optimization with Niching (VMO-N) is a framework for multimodal problems (those with multiple optima at several search subspaces). Its only two instances are restricted though. Being a potent multimodal optimizer, the Hill-Valley Evolutionary Algorithm (HillVallEA) uses large populations that prolong its execution. This study strives to revise VMO-N, to contrast it with related approaches, to instantiate it effectively, to get HillVallEA faster, and to indicate methods (previous or new) for practical use. We hypothesize that extra pre-niching search in HillVallEA may reduce the overall population, and that if such a diminution is substantial, it runs more rapidly but effective. After refining VMO-N, we bring out a new case of it, dubbed Hill-Valley-Clustering-based VMO (HVcMO), which also extends HillVallEA. Results show it as the first competitive variant of VMO-N, also on top of the VMO-based niching strategies. Regarding the number of optima found, HVcMO performs statistically similar to the last HillVallEA version. However, it comes with a pivotal benefit for HillVallEA: a severe reduction of the population, which leads to an estimated drastic speed-up when the volume of the search space is in a certain range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.