The recent approval of the General Data Protection Regulation (GDPR) imposes new data protection requirements on data controllers and processors with respect to the processing of European Union (EU) residents' data. These requirements consist of a single set of rules that have binding legal status and should be enforced in all EU member states. In light of these requirements, we propose in this paper the use of a blockchain-based approach to support data accountability and provenance tracking. Our approach relies on the use of publicly auditable contracts deployed in a blockchain that increase the transparency with respect to the access and usage of data. We identify and discuss three di erent models for our approach with di erent granularity and scalability requirements where contracts can be used to encode data usage policies and provenance tracking information in a privacy-friendly way. From these three models we designed, implemented, and evaluated a model where contracts are deployed by data subjects for each data controller, and a model where subjects join contracts deployed by data controllers in case they accept the data handling conditions. Our implementations show in practice the feasibility and limitations of contracts for the purposes identi ed in this paper.
The control and protection of user data is a very important aspect in the design and deployment of the Internet of Things (IoT). The heterogeneity of IoT technologies, the large number of devices and systems, and the different types of users and roles create important challenges in this context. In particular, requirements of scalability, interoperability, trust and privacy are difficult to address even with the considerable amount of existing work both in the research and standardization community. In this paper we propose a Model-based Security Toolkit, which is integrated in a management framework for IoT devices, and supports specification and efficient evaluation of security policies to enable the protection of user data. Our framework is applied to a Smart City scenario in order to demonstrate its feasibility and performance.
Even though public awareness about privacy risks in the Internet is increasing, in the evolution of the Internet to the Internet of Things (IoT) these risks are likely to become more relevant due to the large amount of data collected and processed by the “Things”. The business drivers for exploring ways to monetize such data are one of the challenges identified in this paper for the protection of Privacy in the IoT. Beyond the protection of privacy, this paper highlights the need for new approaches, which grant a more active role to the users of the IoT and which address other potential issues such as the Digital Divide or safety risks. A key facet in ethical design is the transparency of the technology and services in how that technology handles data, as well as providing choice for the user. This paper presents a new approach for users’ interaction with the IoT, which is based on the concept of Ethical Design implemented through a policy-based framework. In the proposed framework, users are provided with wider controls over personal data or the IoT services by selecting specific sets of policies, which can be tailored according to users’ capabilities and to the contexts where they operate. The potential deployment of the framework in a typical IoT context is described with the identification of the main stakeholders and the processes that should be put in place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.