The spatiotemporal game between predators and prey is a fundamental process governing their distribution dynamics. Players may adopt different tactics as the associated costs and benefits change through time. Yet few studies have investigated the potentially simultaneous and dynamic nature of movement tactics used by both players. It is particularly unclear to what extent perceived predation risk mediates the fine‐scale distribution of large and dangerous prey, which are mostly driven by bottom–up, resource‐related processes. We built habitat use and movement models based on 10 years of monitoring GPS‐collared grey wolves Canis lupus and plains bison Bison bison bison in Prince Albert National Park, Canada, to investigate the predator–large prey game in a multi‐prey system. Bison did not underuse patches of high‐quality vegetation at any time during the seasonal cycle even though wolves were selectively patrolling these areas. Rather, in at least one season, bison engaged in complex tactics comprised of proactive responses to the long‐term distribution (risky places) and reactive responses to the immediate proximity (risky times) of their opponent. In summer–autumn, bison reduced the time spent in food‐rich patches as both the long‐term use and the immediate proximity of wolves increased. By demonstrating that wolf distribution triggers patch abandonment by bison, we provide a key element in support of the shell game hypothesis – where prey move constantly to avoid predators attempting to anticipate their location. In winter, a season of relatively high energetic stress, bison no longer abandoned food‐rich patches as predation risk increased, while no bison responses to wolves were observed in spring–summer. Our work demonstrates the highly dynamic and complex nature of the predator–large prey spatiotemporal game, a key trait‐mediated mechanism by which trophic interactions structure ecological communities.
Crop raiding is an increasing source of human–wildlife conflict that antagonizes humans and can lead to heightened killing of wildlife. Attraction to crops can trigger ecological traps, where animals prefer areas of their range that confer relatively low fitness. Food can be used to draw animals away from problematic areas, but an alternative considered less often is to replace high‐quality food with poorer alternatives. In any case, managers often have no means of anticipating by how much such interventions should impact animal use of space. Optimal foraging theory predicts that foragers optimizing their diet should choose food items according to their relative profitability (i.e., digestible energy/ handling time), a theoretical prediction that can orient management actions. Accordingly, we developed an individual‐based model (IBM) simulating movement through empirical rules under an optimal foraging framework. Our objective was to quantify the effect size of cultivating alternate crops to reduce crop raiding and the associated human‐induced mortality driving an ecological trap for an energy maximizer, plains bison (Bison bison bison). Results showed that almost tripling the area of cultivation of crops of lower profitability (from 24.3% of the bison range outside the protected area in one management scenario to 70.3% in another) only led to a 25% additional decrease in the intensity of crop raiding (from a decrease of 40% in the first scenario to a decrease of 65% in the second). This suggests that localized interventions in the landscape are likely to have a stronger impact in mitigating crop raiding than broad actions ignoring spatial patterns in food distribution. However, we obtained no significant reduction in the number of simulated bison being harvested in the first scenario, and only a small reduction in the second, when the intervention was spatially broad. Our individual‐based approach to animal movement informed by optimal foraging demonstrates that linking landscape configuration to mortality rates can help managers anticipate the effectiveness of manipulating food to keep animals away from problematic zones. Yet disarming ecological traps driven by human hunting appears to be a much more challenging undertaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.