We propose a new formulation along with a family of finite element schemes for the approximation of the interaction between fluid motion and linear mechanical response of a porous medium, known as Biot's consolidation problem. The steady-state version of the system is recast in terms of displacement, pressure, and volumetric stress, and both continuous and discrete formulations are analyzed as compact perturbations of invertible problems employing a Fredholm argument. In particular, the error estimates are derived independently of the Lamé constants. Numerical results indicate the satisfactory performance and competitive accuracy of the introduced methods.
Abstract.In this paper we analyze fully-mixed finite element methods for the coupling of fluid flow with porous media flow in 2D. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The fully-mixed concept employed here refers to the fact that we consider dual-mixed formulations in both media, which means that the main unknowns are given by the pseudostress and the velocity in the fluid, together with the velocity and the pressure in the porous medium. In addition, the transmission conditions become essential, which leads to the introduction of the traces of the porous media pressure and the fluid velocity as the associated Lagrange multipliers. We apply the Fredholm and Babuška-Brezzi theories to derive sufficient conditions for the unique solvability of the resulting continuous and discrete formulations. In particular, we show that the existence of uniformly bounded discrete liftings of the normal traces simplifies the derivation of the corresponding stability estimates. A feasible choice of subspaces is given by Raviart-Thomas elements of lowest order and piecewise constants for the velocities and pressures, respectively, in both domains, together with continuous piecewise linear elements for the Lagrange multipliers. Finally, several numerical results illustrating the good performance of the method with these discrete spaces, and confirming the theoretical rate of convergence, are provided.
In this work we present and analyse a mixed finite element method for the coupling of fluid flow with porous media flow. The flows are governed by the Navier--Stokes and the Darcy--Forchheimer equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers--Joseph--Saffman law. We consider the standard mixed formulation in the Navier--Stokes domain and the dual-mixed one in the Darcy--Forchheimer region, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The well-posedness of the problem is achieved by combining a fixed-point strategy, classical results on nonlinear monotone operators and the well-known Schauder and Banach fixed-point theorems. As for the associated Galerkin scheme we employ Bernardi--Raugel and Raviart--Thomas elements for the velocities, and piecewise constant elements for the pressures and the Lagrange multiplier, whereas its existence and uniqueness of solution is established similarly to its continuous counterpart, using in this case the Brouwer and Banach fixed-point theorems, respectively. We show stability, convergence, and a priori error estimates for the associated Galerkin scheme. Finally, we report some numerical examples confirming the predicted rates of convergence, and illustrating the performance of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.