Use of clinical-grade human induced pluripotent stem cell (iPSC) lines as a starting material for the generation of cellular therapeutics requires demonstration of comparability of lines derived from different individuals and in different facilities. This requires agreement on the critical quality attributes of such lines and the assays that should be used. Working from established recommendations and guidance from the International Stem Cell Banking Initiative for human embryonic stem cell banking, and concentrating on those issues more relevant to iPSCs, a series of consensus workshops has made initial recommendations on the minimum dataset required to consider an iPSC line of clinical grade, which are outlined in this report. Continued evolution of this field will likely lead to revision of these guidelines on a regular basis.
We demonstrate derivation of induced pluripotent stem cells (iPSCs) from terminally differentiated mouse cells in serum- and feeder-free stirred suspension cultures. Temporal analysis of global gene expression revealed high correlations between cells reprogrammed in suspension and cells reprogrammed in adhesion-dependent conditions. Suspension (S) reprogrammed iPSCs (SiPSCs) could be differentiated into all three germ layers in vitro and contributed to chimeric embryos in vivo. SiPSC generation allowed for efficient selection of reprogramming factor expressing cells based on their differential survival and proliferation in suspension. Seamless integration of SiPSC reprogramming and directed differentiation enabled the scalable production of functionally and phenotypically defined cardiac cells in a continuous single cell- and small aggregate-based process. This method is an important step towards the development of a robust PSC generation, expansion and differentiation technology.
Colletotrichum kahawae is the causal agent of the coffee berry disease, infecting leaves and coffee berries at any stage of their development. Colletotrichum gloeosporioides is the causal agent of brown blight, infecting ripe berries only. Both fungi secrete the same pattern of carboxylesterases to the fermentation broth when cutin is used as carbon source. By using two different strategies composed of two precipitation steps (ammonium sulphate and acetic acid precipitation) and two chromatographic steps, two proteins displaying carboxylesterase activity were purified to electrophoretic homogeneity. One, with a molecular weight (MW) of 21 kDa, has a blocked N terminus and was identified as cutinase by peptide mass fingerprint and mass spectrometry/mass spectrometry data acquired after peptide derivatization with 4-sulphophenyl isothiocyanate. The second, with a MW of 40 kDa, displays significant carboxylesterase activity on tributyrin but low activity on p-nitrophenyl butyrate. N-terminal sequencing for this protein does not reveal any homology to other carboxylesterases. These two enzymes, which were secreted by both fungi, appear homologous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.