Subdivision surfaces offer great flexibility in capturing irregular topologies combined with higher order smoothness. For instance, Loop and Catmull-Clark subdivision schemes provide C 2 smoothness everywhere except at extraordinary vertices, where the generated surfaces are C 1 smooth. The combination of flexibility and smoothness leads to their frequent use in geometric modeling and makes them an ideal candidate for performing isogeometric analysis of higher order problems with irregular topologies, e.g. thin shell problems. In the neighborhood of extraordinary vertices, however, the resulting surfaces (and the functions defined on them) are non-polynomial. Thus numerical integration based on quadrature has to be performed carefully to preserve the expected higher order consistency. This paper presents a detailed case study of different quadrature schemes for isogeometric discretizations of partial differential equations on closed surfaces with Loop's subdivision scheme. As model problems we consider elliptic equations with the Laplace-Beltrami and the surface bi-Laplacian operator as well as the associated eigenvalue problem for the Laplace-Beltrami operator. A particular emphasis is on the robustness of the approach in the vicinity of extraordinary vertices. Based on a series of numerical experiments, different quadrature schemes are compared. Mid-edge quadrature, which can easily be implemented via a lookup table, turns out to be a preferable choice due to its robustness and efficiency.
Splines and subdivision curves are flexible tools in the design and manipulation of curves in Euclidean space. In this paper we study generalizations of interpolating splines and subdivision schemes to the Riemannian manifold of shell surfaces in which the associated metric measures both bending and membrane distortion. The shells under consideration are assumed to be represented by Loop subdivision surfaces. This enables the animation of shells via the smooth interpolation of a given set of key frame control meshes. Using a variational time discretization of geodesics efficient numerical implementations can be derived. These are based on a discrete geodesic interpolation, discrete geometric logarithm, discrete exponential map, and discrete parallel transport. With these building blocks at hand discrete Riemannian cardinal splines and three different types of discrete, interpolatory subdivision schemes are defined. Numerical results for two different subdivision shell models underline the potential of this approach in key frame animation.
A variational time discretization of anisotropic Willmore flow combined with a spatial discretization via piecewise affine finite elements is presented. Here, both the energy and the metric underlying the gradient flow are anisotropic, which in particular ensures that Wulff shapes are invariant up to scaling under the gradient flow. In each time step of the gradient flow a nested optimization problem has to be solved. Thereby, an outer variational problem reflects the time discretization of the actual Willmore flow and involves an approximate anisotropic L 2 -distance between two consecutive time steps and a fully implicit approximation of the anisotropic Willmore energy. The anisotropic mean curvature needed to evaluate the energy integrand is replaced by the time discrete, approximate speed from an inner, fully implicit variational scheme for anisotropic mean curvature motion. To solve the nested optimization problem a Newton method for the associated Lagrangian is applied. Computational results for the evolution of curves underline the robustness of the new scheme, in particular with respect to large time steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.