The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been established as a powerful coupling technology for the conjugation of proteins, nucleic acids, and polysaccharides. Nevertheless, several shortcomings related to the presence of Cu, mainly oxidative degradation by reactive oxygen species and sample contamination by Cu, have been pointed out. This Minireview discusses key aspects found in the development of the efficient and benign functionalization of biomacromolecules through CuAAC, as well as the Cu-free strain-promoted azide-alkyne cycloaddition (SPAAC).
[structures: see text] The absolute configuration of 1,2-, 1,3-, 1,4-, and 1,5-diols formed by two secondary (chiral) hydroxy groups can be deduced by comparison of the NMR spectra of the corresponding bis-(R)- and bis-(S)-MPA esters. The correlation between the NMR spectra of the bis-ester derivatives and the absolute stereochemistry of the diol involves the comparison of the chemical shifts of the signals for substituents R1/R2 and for the hydrogens attached to the two chiral centers [H(alpha)(R1) and H(alpha)(R2)] in the bis-(R)- and the bis-(S)-ester and is expressed as delta deltaRS. Theoretical calculations [energy minimization by semiempirical (AM1), ab initio (HF), DFT (B3LYP), and Onsager methods, and aromatic shielding effect calculations] and experimental data (NMR and CD spectroscopy) indicate that in these bis-MPA esters, the experimental delta deltaRS values are the result of the contribution of the shielding/deshielding effects produced by the two MPA units that combine according to the actual stereochemistry of the diol. The reliability of these correlations is demonstrated with a wide range of diols of known absolute configuration derivatized with MPA and 9-AMA as auxiliary reagents. A simple graphical model that allows the simultaneous assignment of the two asymmetric carbons of a 1,n-diol by comparison of the NMR spectra (delta deltaRS signs) of its bis-(R)- and bis-(S)-AMAA ester derivatives is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.