Additive manufacturing (AM) of medical devices such as orthopedic implants and hearing aids is highly attractive because of the potential of AM to match the complex form and mechanics of individual human bodies. Externally worn and implantable tissue-support devices, such as ankle or knee braces, and hernia repair mesh, offer a new opportunity for AM to mimic tissuelike mechanics and improve both patient outcomes and comfort. Here, it is demonstrated how explicit programming of the toolpath in an extrusion AM process can enable new, flexible mesh materials having digitally tailored mechanical properties and geometry. Meshes are fabricated by extrusion of thermoplastics, optionally with continuous fiber reinforcement, using a continuous toolpath that tailors the elasticity of unit cells of the mesh via incorporation of slack and modulation of filament-filament bonding. It is shown how the tensile mesh mechanics can be engineered to match the nonlinear response of muscle. An ankle brace with directionally specific inversion stiffness arising from embedded mesh is validated, and further concepts for 3D mesh devices are prototyped.
Aseptic loosening, or loss of implant fixation, is a common complication following total joint replacement. Revision surgeries cost the healthcare system over $8 billion annually in the United States. Despite the prevalence of aseptic loosening, timely and accurate detection remains a challenge because traditional imaging modalities, such as plain radiographs, struggle to reliably detect the early stages of implant loosening. Motivated by this challenge, we present a novel approach for in vivo monitoring and failure detection of cemented joint replacements. Poly(methyl methacrylate) (PMMA) bone cement is modified with low volume fractions of chopped carbon fiber (CF) to impart piezoresistive-based self-sensing. Electrical impedance tomography (EIT) is then used to detect and monitor load-induced deformation and fracture of CF/PMMA in a phantom tank. We therefore show that EIT indeed is able to detect loading force on a prosthetic surrogate, distinguish between increasing load magnitudes, detect failure of implant fixation, and even distinguish between cement cracking and cement de-bonding without direct contact to the surrogate. Because EIT is a low-cost, physiologically benign, and potentially real-time imaging modality, the feasibility study herein presented could positively impact orthopedic researchers by providing, via in vivo monitoring, insight into the factors that initiate aseptic loosening.
Electromyography is a technique to record and analyze signals from muscle tissue. Commonly, gel-based (Ag/AgCl) electrodes are used to detect muscle action potentials. Current gel-based electrode designs, however, do not perform well under constant movement and therefore are less suitable to monitor muscle behavior under everyday activities. Textile electrodes do well under movement and extended use, but produce weaker signals than their gel-based counterparts. This work points towards a reduction of this performance gap when the textile electrodes are designed to fit the target muscle. Four textile electrodes of different sizes and shapes are tested on the biceps brachii of 13 subjects. Signal parameters such as the signal-to-noise ratio and voltage root-mean-square are used to determine the quality of the myoelectric signals generated by these electrodes. Results with statistically significant differences show that the electrode area and alignment to the muscle fibers affect signal quality and strength. These results indicate that target muscle characteristics should dictate the electrode dimensional parameters to optimize surface electromyography signal acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.