SummaryThe proapoptotic Bcl-2 protein Bax is predominantly found in the cytosol of nonapoptotic cells and is commonly thought to translocate to mitochondria following an apoptotic stimulus. The current model for Bax activation is that BH3 proteins bind to cytosolic Bax, initiating mitochondrial targeting and outer-membrane permeabilization. Here, we challenge this and show that Bax is constitutively targeted to mitochondria but in nonapoptotic cells is constantly translocated back to the cytosol. Using live-cell spinning-disk confocal imaging with a combination of FLIP, FRAP, and photoactivatable GFP-Bax, we demonstrate that disrupting adhesion-dependent survival signals slows the rate of Bax’s dissociation from mitochondria, leading to its accumulation on the outer mitochondrial membrane. The overall accumulation of mitochondrial Bax following loss of survival signaling sensitizes cells to proapoptotic BH3 proteins. Our findings show that Bax is normally in a dynamic equilibrium between cytosol and mitochondria, enabling fluctuations in survival signals to finely adjust apoptotic sensitivity.
Apoptosis is regulated by interactions between the BH3-only and multi-domain Bcl-2 family proteins. These interactions are integrated on the outer mitochondrial membrane (OMM) where they set the threshold for apoptosis, known as mitochondrial priming. However, how mitochondrial priming is controlled at the level of single cells remains unclear. Retrotranslocation of Bcl-XL has been proposed as one mechanism, removing pro-apoptotic Bcl-2 proteins from the OMM, thus reducing priming. Contrary to this view, we now show that Bcl-XL retrotranslocation is inhibited by binding to its BH3-only partners, resulting in accumulation of these protein complexes on mitochondria. We find that Bcl-XL retrotranslocation dynamics are tightly coupled to mitochondrial priming. Quantifying these dynamics indicates the heterogeneity in priming between cells within a population and predicts how they subsequently respond to a pro-apoptotic signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.