The Differential Evolution (DE) algorithm was ini tially proposed for continuous numerical optimization, but it has been applied with success in many combinatorial optimization problems, particularly permutation-based integer combinatorial problems. In this paper, a new and general approach for combinatorial optimization is proposed using the Differential Evolution algorithm. The proposed approach aims at preserving its interesting search mechanism for discrete domains, by defining the difference between two candidate solutions as a differential list of movements in the search space. Thus, a more meaningful and general differential mutation operator for the context of combina torial optimization problems can be produced. We discuss three alternatives for using the differential list of movements within the differential mutation operation. We present results on instances of the Traveling Salesman Problem (TSP) and the N-Queen Problem (NQP) to illustrate the adequacy of the proposed approach for combinatorial optimization.
The Differential Evolution (DE) algorithm is an important and powerful evolutionary optimizer in the context of continuous numerical optimization. Recently, some authors have proposed adaptations of its differential mutation mechanism to deal with combinatorial optimization, in particular permutation-based integer combinatorial problems. In this paper, the authors propose a novel and general DE-based metaheuristic that preserves its interesting search mechanism for discrete domains by defining the difference between two candidate solutions as a list of movements in the search space. In this way, the authors produce a more meaningful and general differential mutation for the context of combinatorial optimization problems. The movements in the list can then be applied to other candidate solutions in the population as required by the differential mutation operator. This paper presents results on instances of the Travelling Salesman Problem (TSP) and the N-Queen Problem (NQP) that suggest the adequacy of the proposed approach for adapting the differential mutation to discrete optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.