Background and Objectives: The aim of this study was to assess and compare the drag and energy cost of three cyclists assessed by computational fluid dynamics (CFD) and analytical procedures. Materials and methods: A transradial (Tr) and transtibial (Tt) were compared to a full-body cyclist at different speeds. An elite male cyclist with 65 kg of mass and 1.72 m of height volunteered for this research with his competition cloths, helmet and bicycle with 5 kg of mass. A 3D model of the bicycle and cyclist in the upright position was obtained for numerical simulations. Upon that, two more models were created, simulating elbow and knee-disarticulated athletes. Numerical simulations by computational fluid dynamics and analytical procedures were computed to assess drag and energy cost, respectively. Results: One-Way ANOVA presented no significant differences between cyclists for drag (F = 0.041; p = 0.960; η2 = 0.002) and energy cost (F = 0.42; p = 0.908; η2 = 0.002). Linear regression presented a very high adjustment for absolute drag values between able-bodied and Tr (R2 = 1.000; Ra2 = 1.000; SEE = 0.200) and Tt (R2 = 1.00; Ra2 = 1.000; SEE = 0.160). The linear regression for energy cost presented a very high adjustment for absolute values between able-bodied and Tr (R2 = 1.000; Ra2 = 1.000; SEE = 0.570) and Tt (R2 = 1.00; Ra2 = 1.00; SEE = 0.778). Conclusions: This study suggests that drag and energy cost was lower in the able-bodied, followed by the Tr and Tt cyclists.
<abstract> <p>Wheelchair racing is one of the most important sports in the Paralympics. The detailed analysis of all parameters is of great importance to achieve sporting excellence in this modality. In wheelchair racing, resistive and propulsive forces determine the movement of the athlete-wheelchair system. Most of propulsive forces are generated by the strength of individuals. As a result, strength levels play an important role in propelling the athlete-wheelchair system. Thus, the main objective of this study is to provide a set of methodologies to assess propulsive and resistive forces. The manuscript presents different methods and procedures, based on previous studies, that can be used for wheelchair racing athletes. Resistive forces in wheelchair racing can be evaluated by analytical procedures, experimental tests, and numerical simulations. Moreover, the strength of athletes' upper limbs to generate propulsion in wheelchair races can be assessed by dynamometry, one-repetition maximum, and medicine ball throw test. It may be that the tests presented may be useful to predict the strength and endurance of athletes' upper limbs. However, this competitive sport still presents a considerable gap in the Paralympics research. Currently, in Paralympic sport, evidence-based methodologies are lacking, making it an issue for athletes, coaches and researchers to support their work on scientific evidences.</p> </abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.