Nested reconfiguration is an emerging research area in modular robotics. Such a novel design concept utilizes individual robots with distinctive reconfiguration characteristics (intra-reconfigurability) capable of combining with other homogeneous/heterogeneous robots (inter-reconfigurability). The objective of this approach is to generate more complex morphologies for performing specific tasks that are far from the capabilities of a single module or to respond to programmable assembly requirements. The two-level reconfiguration process in nested reconfigurable robotic system implies several technical challenges in hardware design, planning algorithms, and control strategies. In this paper, we discuss the theory, concept, and initial mechanical design of Hinged-Tetro, a self-reconfigurable module conceived for the study of nested reconfiguration. Hinged-Tetro is a mobile robot that uses the principle of hinged dissection of polyominoes to transform itself into any of the seven one-sided tetrominoes, the Tetris pieces, in a straightforward way. The robot can also combine with other modules for shaping complex structures or giving rise to a robot with new capabilities. Some preliminary experiments of intrareconfigurability with an implemented prototype are presented.
Studies of creativity have tended to focus on isolated individuals, under the assumption that it can be defined as a characteristic of an extraordinary person, product, or process. Existing computational models of creative behavior have inherited this emphasis on independent generative processes. However, an increasing multidisciplinary consensus regards creativity as a systems property, and extends the focus of inquiry to include the interaction between generative individuals and evaluative social groups. To acknowledge the complementarity of evaluative processes by social groups, experts, and peers, this paper presents experimentation with a framework of design as a social activity. This model is used to inspect phenomena associated with creativity in the interaction between designers and their societies. In particular, this paper describes the strength of social ties as a mechanism of social organization, and explores its potential relation to creativity in a computational social simulation. These experiments illustrate ways in which the role of designers as change agents of their societies can be largely determined by how the evaluating group self-organizes over time. A key potential implication is that the isolated characteristics of designers may be insufficient to formulate conclusions about the nature and effects of their behavior. Instead, causality could be attributed to situational factors that define the relationship between designers and their evaluators.
Legged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient, but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of a novel reconfigurable Theo Jansen linkage that produces a wide variety of gait cycles, opening new possibilities for innovative applications. The suggested mechanism switches from a pin-jointed Grübler kinematic chain to a 5-degree-of-freedom mechanism with slider joints during the reconfiguration process. It is shown that such reconfigurable linkage significantly extend the capabilities of the original design, while maintaining its mechanical simplicity during normal operation, to not only produce different useful gait patterns but also to realize behaviors beyond locomotion. Experiments with an implemented prototype are presented, and their results validate the proposed approach.
In this paper we present a computational approach to the integration of mass customization into the design of novel solutions. We propose the use of entropy as a function of the diversity of solutions that can be generated within a design space. This work demonstrates that the potential of design systems to generate novel solutions can be estimated using complexity measures. This principle is implemented in an evolutionary system for the design of automotive instrument panels that display situation-relevant information in configurations that adapt to traffic conditions and driving actions. This sample application shows that the application of complexity maximization as a selection criterion in evolutionary design systems yields a large variety of solutions of high fitness. We also present guidelines for future developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.