Members of the genus Acidithiobacillus, now ranked within the class Acidithiobacillia, are model bacteria for the study of chemolithotrophic energy conversion under extreme conditions. Knowledge of the genomic and taxonomic diversity of Acidithiobacillia is still limited. Here, we present a systematic analysis of nearly 100 genomes from the class sampled from a wide range of habitats. Some of these genomes are new and others have been reclassified on the basis of advanced genomic analysis, thus defining 19 Acidithiobacillia lineages ranking at different taxonomic levels. This work provides the most comprehensive classification and pangenomic analysis of this deep-branching class of Proteobacteria to date. The phylogenomic framework obtained illuminates not only the evolutionary past of this lineage, but also the molecular evolution of relevant aerobic respiratory proteins, namely the cytochrome bo3 ubiquinol oxidases.
A novel thermoacidophilic archaeal strain has been isolated from three geothermal acidic hot springs in Copahue, Argentina. One of the most striking characteristic of ALE1 isolate is its metabolic versatility. It grows on sulphur, tetrathionate, iron (II) and sucrose under aerobic conditions, but it can also develop under anaerobic conditions using iron (III) or sulphur as electron acceptors and sulphur or hydrogen as electron donors autotrophically. A temperature of 75 °C and a pH between 2.5 and 3.0 are strain ALE1 optimal growth conditions, but it is able to oxidise iron (II) even at pH 1.0. Cells are irregular cocci surrounded by a regularly arrayed glycoprotein layer (S-layer). Phylogenetic analysis shows that strain ALE1 belongs to the family Sulfolobaceae in the class Thermoprotei, within the phylum Crenarchaeota. Based on 16S rRNA gene sequence similarity on NCBI database, ALE1 does not have closely related relatives, neither in culture nor uncultured, which is more surprising. Its closest related species are strains of Acidianus hospitalis (91 % of sequence similarity), Acidianus infernus (90 %), Acidianus ambivalens (90 %) and Acidianus manzanensis (90 %). Its DNA base composition of 34.5 % mol C + G is higher than that reported for other Acidianus species. Considering physiological and phylogenetic characteristics of strain ALE1, we considered it to represent a novel species of the genus Acidianus (candidatus "Acidianus copahuensis"). The aim of this study is to physiologically characterise this novel archaea in order to understand its role in iron and sulphur geochemical cycles in the Copahue geothermal area and to evaluate its potential applications in bioleaching and biooxidation.
A novel yeast species was isolated from the sugar-rich stromata of Cyttaria hariotii collected from two different Nothofagus tree species in the Andean forests of Patagonia, Argentina. Phylogenetic analyses of the concatenated sequence of the rRNA gene sequences and the protein-coding genes for actin and translational elongation factor-1α indicated that the novel species belongs to the genus Hanseniaspora. De novo genome assembly of the strain CRUB 1928T yielded a 10.2-Mbp genome assembly predicted to encode 4452 protein-coding genes. The genome sequence data were compared to the genomes of other Hanseniaspora species using three different methods, an alignment-free distance measure, Kr, and two model-based estimations of DNA-DNA homology values, of which all provided indicative values to delineate species of Hanseniaspora. Given its potential role in a rare indigenous alcoholic beverage in which yeasts ferment sugars extracted from the stromata of Cytarria sp., we searched for the genes that may suggest adaptation of novel Hanseniaspora species to fermenting communities. The SSU1-like gene encoding a sulfite efflux pump, which, among Hanseniaspora, is present only in close relatives to the new species, was detected and analyzed, suggesting that this gene might be one factor that characterizes this novel species. We also discuss several candidate genes that likely underlie the physiological traits used for traditional taxonomic identification. Based on these results, a novel yeast species with the name Hanseniaspora gamundiae sp. nov. is proposed with CRUB 1928T (ex-types: ZIM 2545T = NRRL Y-63793T = PYCC 7262T; MycoBank number MB 824091) as the type strain. Furthermore, we propose the transfer of the Kloeckera species, K. hatyaiensis, K. lindneri and K. taiwanica to the genus Hanseniaspora as Hanseniaspora hatyaiensis comb. nov. (MB 828569), Hanseniaspora lindneri comb. nov. (MB 828566) and Hanseniaspora taiwanica comb. nov. (MB 828567).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.