Raw milk adulteration with cheese whey is a major problem that affects the dairy industry. The objective of this work was to evaluate the adulteration of raw milk with the cheese whey obtained from the coagulation process, with chymosin enzyme using casein glycomacropeptide (cGMP) as an HPLC marker. Milk proteins were precipitated with 24% TCA; with the supernatant obtained, a calibration curve was established by mixing raw milk and whey in different percentages, which were passed through a KW-802.5 Shodex molecular exclusion column. A reference signal, with a retention time of 10.8 min, was obtained for each of the different percentages of cheese whey; the higher the concentration, the higher the peak. Data analysis was adjusted to a linear regression model, with an R2 of 0.9984 and equation to predict dependent variable (cheese whey percentage in milk) values. The chromatography sample was collected and analyzed by three tests: a cGMP standard HPLC analysis, MALDI-TOF spectrometry, and immunochromatography assay. The results of these three tests confirmed the presence of the cGMP monomer in adulterated samples with whey, which was obtained from chymosin enzymatic coagulation. As a contribution to food safety, the molecular exclusion chromatography technique presented is reliable, easy to implement in a laboratory, and inexpensive, compared with other methodologies, such as electrophoresis, immunochromatography, and HPLC-MS, thus allowing for the routine quality control of milk, an important product in human nutrition.
Using Response Surface Methodology (RSM) we evaluated the culture conditions (nitrogen source, carbon source, pH and agitation rate) that increase the biomass of Acidocella facilis strain USBA-GBX-505 and therefore enhance the production of its lipolytic enzyme, 505 LIP. RSM results revealed that yeast extract and agitation were key culture factors that increased the growth-associated lipolytic activity by 4.5-fold (from 0.13 U.mg -1 to 0.6 U.mg -1). The 505 LIP lipase was partially purified using size-exclusion chromatography and ion-exchange chromatography. Its molecular weight was >77 kDa. The enzyme shows its optimum catalytic activity at 55 °C and pH 7.5. EDTA, PMSF, 1-butanol and DMSO inhibited enzymatic activity, whereas Tween 20, acetone, glycerol and methanol increased it. Metallic ions are not required for the activity of 505 LIP, and even have an inhibitory effect on the enzyme. This study shows the potential use of A. facilis strain USBA-GBX-505 for the production of a newly identified lipolytic enzyme, 505 LIP, which is stable at moderate temperatures and in the presence of organic solvents. These are important characteristics for the synthesis of many useful products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.