BackgroundDiabetic retinopathy is the main cause of preventable blindness in the economically active population in western countries. Diabetic retinopathy screening is effective in preventing blindness and can be performed through various diagnostic methods. Our objective is to compare binocular indirect ophthalmoscopy (BIO) to telemedicine protocols of digital retinography for diabetic retinopathy screening in a large and heterogenous type 1 diabetes population in a developing country.MethodsData from 1266 Type 1 Diabetes Mellitus patients from a Brazilian multicenter study were analyzed. Patients underwent BIO and digital retinography, non-mydriatic and mydriatic. Images were sent to a reading center in a telemedicine protocol. Agreement between the different methods was calculated with kappa statistic for diabetic retinopathy and maculopathy classification. Clinical outcome was either observation or referral to specialist.ResultsAgreement between BIO and mydriatic retinography was substantial (kappa 0.67–0.74) for diabetic retinopathy observation vs referral classification. Agreement was fair to moderate (kappa 0.24–0.45) between retinography and BIO for maculopathy. Poor mydriasis was the main obstacle to image reading and classification, especially on the non-mydriatic strategy, occurring in 11.9 % of right eyes and 16.9 % of left eyes.ConclusionMydriatic retinography showed a substantial agreement to BIO for diabetic retinopathy observation vs referral classification. A significant amount of information was lost on the non-mydriatic technique because of poor mydriasis. We recommend a telemedicine-based diabetic retinopathy screening strategy with digital mydriatic retinography, preferably with 2 fields, and advise against non-mydriatic retinography in developing countries.
TXNIP and TXN are upregulated in urinary sediment of T1D patients with diabetic kidney disease (DKD), but only TXNIP expression is associated with magnitude of eGFR decline.
The patient underwent a left salpingo-oophorectomy that confirmed the diagnosis of a unilateral Leydig cell tumor. Complete normalization of androgens and gonadotropin levels was achieved after surgery.
Quantitative polymerase chain reaction was employed to quantify expression of two genes coding for advanced glycation end-product receptors [RAGE ( AGER) and AGER1 ( DDOST)] and of the gene coding the deacetylase SIRT1 ( SIRT1) in peripheral blood mononuclear cells from type 1 diabetes patients without [Group A, n = 35; 28.5 (24-39) years old; median (interquartile interval)] or with at least one microvascular complication [Group B, n = 117; 34.5 (30-42) years old]; 31 healthy controls were also included. In a subgroup of 48 patients, daily advanced glycation end-products intake before blood collection was assessed. Lower expression of DDOST was found in patients than in controls after adjustment for sex, age, use of statins, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Higher expressions of AGER, DDOST and SIRT1 were observed in Group A. Stratifying by complications, AGER and DDOST expressions were higher in those without retinopathy and without diabetic kidney disease, respectively, compared to patients with these complications. Patients using statins or angiotensin receptor blockers presented higher expression of DDOST. Expression of SIRT1 was higher in patients consuming ≥12,872 KU daily of advanced glycation end-products. Although AGER, DDOST and SIRT1 are differently expressed in peripheral blood mononuclear cells from type 1 diabetes patients with and without microvascular complications, they are also influenced by dietary advanced glycation end-products and by statins and angiotensin receptor blockers.
Objective:
To compare the serum micro-RNAs (miRNAs) profile of individuals with type 1 diabetes without microvascular complications vs. those with multiple severe microvascular complications, in order to identify epigenetically modulated pathways in these two groups of individuals.
Research Design and Methods:
A total of 10 subjects were selected among individuals followed in the Diabetes Outpatient Clinic and sorted according to the absence or presence of all microvascular complications. Samples from these participants were used for evaluation of serum miRNA expression profile employing a qRT-PCR assay with hydrolysis probes based on the Taqman Low Density Arrays (TLDA) system. The top six most differentially expressed miRNAs between the aforementioned groups were validated by qRT-PCR in additional 47 type 1 diabetes individuals sorted according to the absence or presence of all microvascular complications and matched for age, sex, degree of metabolic control, diabetes duration, and age at diagnosis.
Results:
Twenty one out of three hundred and seventy seven miRNAs were upregulated in the group of individuals with all microvascular complications vs. the group without complications. The following miRs were validated: 518-3p, 34a-5p, 126-5p, 425-5p, 618, and 139-5p and logistic regression analyses showed that miRNA-518-3p and miRNA-618 were positively associated with multiple microvascular complications after adjustment for age, sex, diabetes duration, HbA
1
c and use of statin, angiotensin-converting enzyme inhibitors and amlodipine.
Conclusions:
In this cohort of type 1 diabetes individuals, serum miR-518d-3p and miR-618 were upregulated in those with diabetes kidney disease, diabetes retinopathy, peripheral neuropathy, and cardiovascular autonomic neuropathy in comparison to individuals with no microvascular complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.