Inhibitors of aromatase, the final enzyme of estradiol synthesis, are suspected of inducing memory deficits in women. In previous experiments, we found hippocampal spine synapse loss in female mice that had been treated with letrozole, a potent aromatase inhibitor. In this study, we therefore focused on the effects of letrozole on long-term potentiation (LTP), which is an electrophysiological parameter of memory and is known to induce spines, and on phosphorylation of cofilin, which stabilizes the spine cytoskeleton and is required for LTP in mice. In acute slices of letrozole-treated female mice with reduced estradiol serum concentrations, impairment of LTP started as early as after 6 h of treatment and progressed further, together with dephosphorylation of cofilin in the same slices. Theta-burst stimulation failed to induce LTP after 1 week of treatment. Impairment of LTP was followed by spine and spine synapse loss. The effects were confirmed in vitro by using hippocampal slice cultures of female mice. The sequence of effects in response to letrozole were similar in ovariectomized female and male mice, with, however, differences as to the degree of downregulation. Our data strongly suggest that impairment of LTP, followed by loss of mushroom spines and spine synapses in females, may have implications for memory deficits in women treated with letrozole.
The basolateral amygdala (BLA) integrates sensory input from cortical and subcortical regions, a function that requires marked synaptic plasticity. Here we provide evidence that cytochrome P450 aromatase (AROM), the enzyme converting testosterone to 17-estradiol (E2), contributes to the regulation of this plasticity in a sex-specific manner. We show that AROM is expressed in the BLA, particularly in the basolateral nucleus (BL), in male and female rodents. Systemic administration of the AROM inhibitor letrozole reduced spine synapse density in the BL of adult female mice but not in the BL of male mice. Similarly, in organotypic corticoamygdalar slice cultures from immature rats, treatment with letrozole significantly reduced spine synapses in the BL only in cultures derived from females. In addition, letrozole sex-specifically altered synaptic properties in the BL: in acute slices from juvenile (prepubertal) female rats, wash-in of letrozole virtually abolished long-term potentiation (LTP), whereas it did not prevent the generation of LTP in the slices from males. Together, these data indicate that neuron-derived E2 modulates synaptic plasticity in rodent BLA sex-dependently. As protein expression levels of AROM, estrogen and androgen receptors did not differ between males and females and were not sex-specifically altered by letrozole, the findings suggest sex-specific mechanisms of E2 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.