Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1–29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Some of the authors have reported that a complex hydride, Li(BH(4)), with the (BH(4))(-) anion exhibits lithium fast-ion conduction (more than 1 x 10(-3) S/cm) accompanied by the structural transition at approximately 390 K for the first time in 30 years since the conduction in Li(2)(NH) was reported in 1979. Here we report another conceptual study and remarkable results of Li(2)(BH(4))(NH(2)) and Li(4)(BH(4))(NH(2))(3) combined with the (BH(4))(-) and (NH(2))(-) anions showing ion conductivities 4 orders of magnitude higher than that for Li(BH(4)) at RT, due to being provided with new occupation sites for Li(+) ions. Both Li(2)(BH(4))(NH(2)) and Li(4)(BH(4))(NH(2))(3) exhibit a lithium fast-ion conductivity of 2 x 10(-4) S/cm at RT, and the activation energy for conduction in Li(4)(BH(4))(NH(2))(3) is evaluated to be 0.26 eV, less than half those in Li(2)(BH(4))(NH(2)) and Li(BH(4)). This study not only demonstrates an important direction in which to search for higher ion conductivity in complex hydrides but also greatly increases the material variations of solid electrolytes.
We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12–46 nm and with excellent size distribution as small as 7–8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2–3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98–298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140–145 and 240–250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g–1, 50% higher than those achieved for bulk Ga under identical testing conditions.
We investigate the stability and hydrogen desorption of NaBH 4 . Dynamic pcT (pressure, concentration, and temperature) measurements under constant hydrogen flows are used to determine thermodynamic parameters of reaction. From the van't Hoff equation the enthalpy and entropy of reaction, -108 ( 3 kJ mol -1 of H 2 and 133 ( 3 J K -1 mol -1 of H 2 released, are obtained, respectively. This corresponds to a decomposition temperature of T dec ) 534 ( 10 °C at 1 bar of H 2 . The decomposition thereby occurs in one step; i.e., only one plateau is visible in the pressure composition isotherms. Elemental Na is identified as the major solid component in the residue by X-ray diffraction. The experimental results are discussed on the basis of theoretical calculations using the density functional theory approach. Starting from the optimized structure of the cubic R-phase of NaBH 4 , we discuss possible decomposition routes involving elemental Na and B as well as Na-H and Na-B binary compounds as residual products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.