a b s t r a c tThe time required to stabilise mature aerobic granules is rather variable. In addition, cultivation time and the structural characteristics of granules seem to be related to the nature of wastewater influent. Granular sludge has been used for the treatment of several industrial wastewaters, but nothing has been reported about wastewater characterized by the simultaneous presence of hydrocarbons and high chloride concentration. In this work, the authors analysed the granulation process and performance as well as the physical characteristics of aerobic granules in two Granular Sequencing Batch Airlift Reactors (GSBARs), fed with acetate-based synthetic wastewater in reactor 1 (R1) and with a mixture of real and simulated slop (R2). The results obtained in 100 days show that full granulation was achieved in both reactors. The granules in R2 developed more quickly, but they appeared slightly unstable and more susceptible to breaking. Despite high salt concentration, the efficiency of phosphorous and carbon removal was satisfactory. Low nitrification activity was observed in R1, confirming that a longer time is necessary to obtain the acclimation of autotrophic biomass in aerobic granules. In R2 the combined effect of salinity and hydrocarbons caused the inhibition of the autotrophic biomass, with the consequence that nitrification was absent. Hydrocarbons were initially removed by adsorption afterwards by biological degradation with a removal efficiency of over 90%.
a b s t r a c tThis work investigates the causes of foaming and fouling in an Intermittent Aerated -Membrane BioReactor (IA-MBR) used for wastewater treatment. The experiment was divided into three periods with different aerated regimes expressed with different t aeration /t cycle ratio (Period I: 60 min/180 min, Period II: 80 min/180 min, Period III: 30 min/90 min).The advanced foaming tests used allow the study of the role of extracellular polymeric substances (EPSs) on foaming and fouling. In general, in the Periods I and II, good correlations between the EPSs and the Modified Scum Index without purification (MSI 0 ) and the Foam Power were observed. The results shown that the filamentous microorganisms, which mainly grew in the Period III, play also a key factor in the foaming and fouling. In particular, when a net proliferation of filamentous bacteria occurred (during period III with a higher number of cycles per day) both EPSs concentration and filamentous abundance influence the modified scum index obtained after two purification steps (MSI 2 ). Finally, the processing data show that the EPSs hampered also the membrane filtration but improve the pre-filtration action of cake layer. On the other hand, the co-presence of EPSs and filamentous bacteria reduced the effect o cake layer as pre-filter.
A granular sequencing batch reactor (GSBR) worked for 164 days to study the effect of salinity on aerobic granulation. The feeding had an organic loading rate (OLR) of 1.6 kg COD•m-3 •d-1 and a gradual increase of salinity (from 0.30 to 38 g NaCl-•L-1) to promote a biological saltadaptation. First aggregates (average diameter ≈ 0.4 mm) appeared after 14 days. Extracellular polymeric substances (EPSs) analyses revealed that proteins were mainly higher than polysaccharides, and microorganisms metabolized EPSs as additional carbon source, mostly in feast phase, to face the energy demand for salinity adaptation. No significant worsening of organic matter removal was observed. The initial decrease of nitrification (from 58% to 15%) and the subsequent increase (up to 25%), confirmed the acclimation of AOBs to saline environment, while the accumulation of nitrites suggested NOBs inhibition. The nitrogen removal initially decreased from 58% to 15%, due to the inhibitory effect of salinity, and subsequently increased up to 29% denoting a simultaneous nitrification-denitrification. The dimensions of mature granules (higher than 1 mm) probably involved PAOs growth in the inner anaerobic layers. Nitrites caused a temporary deterioration of phosphorous removal (from 60% to almost zero), that increased up to 25% when nitrites were depleted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.