Richter syndrome (RS) is mostly due to the direct transformation of the chronic lymphocytic leukaemia (CLL) clone, as documented by the same immunoglobulin heavy-chain variable region (IGHV) rearrangement in both CLL and RS cells.In rare cases characterized by a better outcome, the RS clone harbours a different IGHV rearrangement compared to the CLL phase. We investigated the CLL phase of clonally unrelated RS to test whether the RS clone was already identifiable prior to clinicopathologic transformation, albeit undetectable by conventional approaches. CLL cells of eight patients with unrelated RS were subjected to an ultra-deep nextgeneration sequencing (NGS) approach with a sensitivity of 10 −6 . In 7/8 cases, the RS rearrangement was not identified in the CLL phase. In one case, the RS clone was identified at a very low frequency in the CLL phase, conceivably due to the concomitance of CLL sampling and RS diagnosis. Targeted resequencing revealed that clonally unrelated RS carries genetic lesions primarily affecting the TP53, MYC, ATM and NOTCH1 genes. Conversely, mutations frequently involved in de novo diffuse large B-cell lymphoma (DLBCL) without a history of CLL were absent. These results suggest that clonally unrelated RS is a truly de novo lymphoma with a mutational profile reminiscent, at least in part, of clonally related RS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.