Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV)-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP) aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level) HTFP approach to investigate the response to drought of a full-sib F2 partially inbred population (termed here ‘POP6’), whose F1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought) on a population of 4603 trees (503 genotypes) hosted in two adjacent experimental plots (1.67 ha) by conducting low-elevation (25 m) flights with an aerial drone and capturing 7836 thermal infrared (TIR) images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature (Tc) was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype variability under drought stress conditions. Tc derived from aerial thermal imagery presented a good correlation with ground-truth stomatal conductance (gs) in both segmentation techniques. Interestingly, the HTFP approach was instrumental to detect drought-tolerant response in 25% of the population. This study shows the potential of UAV-based thermal imaging for field phenomics of poplar and other tree species. This is anticipated to have tremendous implications for accelerating forest tree genetic improvement against abiotic stress.
Background Arundo donax has attracted renewed interest as a potential candidate energy crop for use in biomass-to-liquid fuel conversion processes and biorefineries. This is due to its high productivity, adaptability to marginal land conditions, and suitability for biofuel and biomaterial production. Despite its importance, the genomic resources currently available for supporting the improvement of this species are still limited.ResultsWe used RNA sequencing (RNA-Seq) to de novo assemble and characterize the A. donax leaf transcriptome. The sequencing generated 1249 million clean reads that were assembled using single-k-mer and multi-k-mer approaches into 62,596 unique sequences (unitranscripts) with an N50 of 1134 bp. TransDecoder and Trinotate software suites were used to obtain putative coding sequences and annotate them by mapping to UniProtKB/Swiss-Prot and UniRef90 databases, searching for known transcripts, proteins, protein domains, and signal peptides. Furthermore, the unitranscripts were annotated by mapping them to the NCBI non-redundant, GO and KEGG pathway databases using Blast2GO. The transcriptome was also characterized by BLAST searches to investigate homologous transcripts of key genes involved in important metabolic pathways, such as lignin, cellulose, purine, and thiamine biosynthesis and carbon fixation. Moreover, a set of homologous transcripts of key genes involved in stomatal development and of genes coding for stress-associated proteins (SAPs) were identified. Additionally, 8364 simple sequence repeat (SSR) markers were identified and surveyed. SSRs appeared more abundant in non-coding regions (63.18%) than in coding regions (36.82%). This SSR dataset represents the first marker catalogue of A. donax. 53 SSRs (PolySSRs) were then predicted to be polymorphic between ecotype-specific assemblies, suggesting genetic variability in the studied ecotypes.ConclusionsThis study provides the first publicly available leaf transcriptome for the A. donax bioenergy crop. The functional annotation and characterization of the transcriptome will be highly useful for providing insight into the molecular mechanisms underlying its extreme adaptability. The identification of homologous transcripts involved in key metabolic pathways offers a platform for directing future efforts in genetic improvement of this species. Finally, the identified SSRs will facilitate the harnessing of untapped genetic diversity. This transcriptome should be of value to ongoing functional genomics and genetic studies in this crop of paramount economic importance.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-017-0828-7) contains supplementary material, which is available to authorized users.
Giant reed (Arundo donax L.) is a perennial rhizomatous grass, which has attracted great attention as a potential lignocellulosic feedstock for bioethanol production due to high biomass yield in marginal land areas, high polysaccharide content and low inhibitor levels in microbial fermentations. However, little is known about the trait variation that is available across a broad ecotypic panel of A. donax nor the traits that contribute most significantly to yield and growth in drought prone environments. A collection of 82 ecotypes of A. donax sampled across the Mediterranean basin was planted in a common garden experimental field in Savigliano, Italy. We analysed the collection using 367 clumps representing replicate plantings of 82 ecotypes for variation in 21 traits important for biomass accumulation and to identify the particular set of ecotypes with the most promising potential for biomass production. We measured morpho‐physiological, phenological and biomass traits and analysed causal relationships between traits and productivity characteristics assessed at leaf and canopy levels. The results identified differences among the 82 ecotypes for all studied traits: those showing the highest level of variability included stomatal resistance, stem density (StN), stem dry mass (StDM) and total biomass production (TotDM). Multiple regression analysis revealed that leaf area index, StDM, StN, number of nodes per stem, stem height and diameter were the most significant predictors of TotDM and the most important early selection criteria for bioenergy production from A. donax. These traits were used in a hierarchical cluster analysis to identify groups of similar ecotypes, and a selection was made of promising ecotypes for multiyear and multisite testing for biomass production. Heritability estimates were significant for all traits. The potential of this ecotype collection as a resource for studies of germplasm diversity and for the analysis of traits underpinning high productivity of A. donax is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.