A WKB solution to the cochlear wave equation is derived, which results from the interaction between the passive dynamics of the basilar membrane and the 1D fluid coupling in the scalae, including both fluid viscosity and compressibility. The effect of various nondimensional parameters on the form of this solution is discussed. A nondimensional damping parameter and a nondimensional phase-shift parameter are shown to have the greatest influence on the response under normal conditions in the cochlea, with the fluid viscosity and compressibility only playing a minor role. It is then shown that in the case of an acoustic rainbow sensor, comprised of a discrete series of Helmholtz resonators in a duct, the governing wave equation in the continuous limit has the same form as the cochlear wave equation. The nondimensional compressibility parameter in this case is governed by the ratio of the Helmholtz resonator volume to that of the connecting duct and this parameter can be much larger than in the cochlea, and so plays a more dominant role in determining the response.
The comprehension of neuronal network functioning, from most basic mechanisms of signal transmission to complex patterns of memory and decision making, is at the basis of the modern research in experimental and computational neurophysiology. While mechanistic knowledge of neurons and synapses structure increased, the study of functional and effective networks is more complex, involving emergent phenomena, nonlinear responses, collective waves, correlation and causal interactions. Refined data analysis may help in inferring functional/effective interactions and connectivity from neuronal activity. The Transfer Entropy (TE) technique is, among other things, well suited to predict structural interactions between neurons, and to infer both effective and structural connectivity in small- and large-scale networks. To efficiently disentangle the excitatory and inhibitory neural activities, in the article we present a revised version of TE, split in two contributions and characterized by a suited delay time. The method is tested on in silico small neuronal networks, built to simulate the calcium activity as measured via calcium imaging in two-dimensional neuronal cultures. The inhibitory connections are well characterized, still preserving a high accuracy for excitatory connections prediction. The method could be applied to study effective and structural interactions in systems of excitable cells, both in physiological and in pathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.