In this systematic review we evaluate the role of chest radiography (CXR) in the diagnostic flow chart for tuberculosis (TB) infection, focusing on latent TB infection (LTBI) in patients requiring medical treatment with biological drugs. In recent findings, patients scheduled for immunomodulatory therapy with biologic drugs are a group at risk of TB reactivation and, in such patients, detection of LTBI is of great importance. CXR for diagnosis of pulmonary TB has good sensitivity, but poor specificity. Radiographic diagnosis of active disease can only be reliably made on the basis of temporal evolution of pulmonary lesions. In vivo tuberculin skin test and ex vivo interferon-γ release assays are designed to identify development of an adaptive immune response, but not necessarily LTBI. Computed tomography (CT) is able to distinguish active from inactive disease. CT is considered a complementary imaging modality to CXR in the screening procedure to detect past and LTBI infection in specific subgroups of patients who have increased risk for TB reactivation, including those scheduled for medical treatment with biological drugs.
Purpose. We compared the accuracy of 18F-Choline-PET/MRI with that of multiparametric MRI (mMRI), 18F-Choline-PET/CT, 18F-Fluoride-PET/CT, and contrast-enhanced CT (CeCT) in detecting relapse in patients with suspected relapse of prostate cancer (PC) after external beam radiotherapy (EBRT). We assessed the association between standard uptake value (SUV) and apparent diffusion coefficient (ADC). Methods. We evaluated 21 patients with biochemical relapse after EBRT. Patients underwent 18F-Choline-PET/contrast-enhanced (Ce)CT, 18F-Fluoride-PET/CT, and mMRI. Imaging coregistration of PET and mMRI was performed. Results. 18F-Choline-PET/MRI was positive in 18/21 patients, with a detection rate (DR) of 86%. DRs of 18F-Choline-PET/CT, CeCT, and mMRI were 76%, 43%, and 81%, respectively. In terms of DR the only significant difference was between 18F-Choline-PET/MRI and CeCT. On lesion-based analysis, the accuracy of 18F-Choline-PET/MRI, 18F-Choline-PET/CT, CeCT, and mMRI was 99%, 95%, 70%, and 85%, respectively. Accuracy, sensitivity, and NPV of 18F-Choline-PET/MRI were significantly higher than those of both mMRI and CeCT. On whole-body assessment of bone metastases, the sensitivity of 18F-Choline-PET/CT and 18F-Fluoride-PET/CT was significantly higher than that of CeCT. Regarding local and lymph node relapse, we found a significant inverse correlation between ADC and SUV-max. Conclusion. 18F-Choline-PET/MRI is a promising technique in detecting PC relapse.
Intraosseous ganglion (IOG) is the most frequently occurring bone lesion within the carpus and is often an incidental finding on radiographs obtained for other reasons. Two types of IOG have been described: an "idiopathic" form (or type I), the pathogenesis of which has not been completely clarified, and a "penetrating" form (or type II), caused by the intrusion of juxtacortical material (often a ganglion cyst of the dorsal soft tissue) into the cancellous bone compartment. The differential diagnosis for IOG is wide-ranging and complex, including lesions of posttraumatic (posttraumatic cystlike defects), degenerative (subchondral degenerative cysts), inflammatory [cystic rheumatoid arthritis, chronic tophaceous gout (CTG)], neoplastic (benign primary bone tumours and synovial proliferative lesions), ischaemic (Kienböck's disease or avascular osteonecrosis of the lunate) and metabolic (amyloidosis) origin. Multimodality imaging of IOGs is a useful diagnostic tool that provides complete morphological characterisation and differentiation from other intraosseous cystic abnormalities of the carpus. Thin-slice multidetector computed tomography (MDCT) can provide high-spatial-resolution images of the cortical and cancellous bone compartments, allowing detection of morphological findings helpful in characterising bone lesions, whereas magnetic resonance (MR) imaging can simultaneously visualise bone, articular surfaces, hyaline cartilage, fibrocartilage, capsules and ligaments, along with intra- and periarticular soft tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.