An increasing number of research and industrial initiatives have focused on publishing Linked Open Data, but little attention has been provided to help consumers to better understand existing data sets. In this paper we discuss how an ontology-driven data abstraction model supports the extraction and the representation of summaries of linked data sets. The proposed summarization model is the backbone of the ABSTAT framework, that aims at helping users understanding big and complex linked data sets. The proposed model produces a summary that is correct and complete with respect to the assertions of the data set and whose size scales well with respect to the ontology and data size. Our framework is evaluated by showing that it is capable of unveiling information that is not explicitly represented in underspecified ontologies and that is valuable to users, e.g., helping them in the formulation of SPARQL queries.
Autocompletion systems support users in the formulation of queries in different situations, from development environments to the web. In this paper we describe Composite Match Autocompletion (COMMA), a lightweight approach to the introduction of semantics in the realization of a semi-structured data autocompletion matching algorithm. The approach is formally described, then it is applied and evaluated with specific reference to the e-commerce context. The semantic extension to the matching algorithm exploits available information about product categories and distinguishing features of products to enhance the elaboration of exploratory queries. COMMA supports a seamless management of both targeted/precise queries and exploratory/vague ones, combining different filtering and scoring techniques. The algorithm is evaluated with respect both to effectiveness and efficiency in a real-world scenario: the achieved improvement is significant and it is not associated to a sensible increase of computational costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.