The D8, D8-LTD, D∞-LTD, D∞, MD∞, and MD8 flow direction methods are evaluated against field observations of overland flow dispersion obtained from novel experimental methods. Thin flows of cold water were released at selected points on a warmer slope and individual overland flow patterns originating from each of these points were observed using a terrestrial laser scanner and a thermal imaging camera. Land microtopography was determined by using laser returns from the dry land surface, whereas overland flow patterns were determined by using either laser returns or infrared emissions from the wetted portions of the land surface. Planar overland flow dispersion is found to play an important role in the region laying immediately downslope of the point source, but attenuates rapidly as flow propagates downslope. In contrast, existing dispersive flow direction methods are found to provide a continued dispersion with distance downslope. Predicted propagation patterns, for all methods considered here, depend critically on the size h of grid cells involved. All methods are found to be poorly sensitive in extremely fine grids (h ≤ 2 cm), and to be poorly specific in coarse grids (h = 2 m). Satisfactory results are, however, obtained in grids having resolutions h that approach the average flow width (50 cm), with the best performances displayed by the MD8 method in the finest grids (5 ≤ h ≤ 20 cm), and by the MD∞, D∞, and D∞-LTD methods in the coarsest grids (20 cm < h ≤ 1 m)
A slow moving compound rock slide located in the northern Apennines of Italy was mapped and monitored through the integration of Airborne Laser Scanning (ALS), multi-temporal long-range Terrestrial Laser Scanning (TLS), and Automated Total Station (ATS) measurements. Landslide features were mapped using a High Resolution Digital Terrain Model (HR-DTM) obtained by merging ALS and TLS data in an Iterative Closest Point (ICP) procedure. Slope movements in the order of centimeters to a few decimeters were quantified with Differential TLS (D-TLS) based on a Surface Matching approach and supported by ATS data to define stable reference surfaces. The integrated approach allowed mapping of the composite geomorphic features of the rock slide under examination, revealing its complex dynamic nature and further proving that laser scanning is a versatile and widely applicable tool for slope process analysi
ABSTRACT:The new era of designing in architecture and civil engineering applications lies in the Building Information Modeling (BIM) approach, based on a 3D geometric model including a 3D database. This is easier for new constructions whereas, when dealing with existing buildings, the creation of the BIM is based on the accurate knowledge of the as-built construction. Such a condition is allowed by a 3D survey, often carried out with laser scanning technology or modern photogrammetry, which are able to guarantee an adequate points cloud in terms of resolution and completeness by balancing both time consuming and costs with respect to the request of final accuracy. The BIM approach for existing buildings and even more for historical buildings is not yet a well known and deeply discussed process. There are still several choices to be addressed in the process from the survey to the model and critical issues to be discussed in the modeling step, particularly when dealing with unconventional elements such as deformed geometries or historical elements. The paper describes a comprehensive workflow that goes through the survey and the modeling, allowing to focus on critical issues and key points to obtain a reliable BIM of an existing monument. The case study employed to illustrate the workflow is the Basilica of St. Stefano in Bologna (Italy), a large monumental complex with great religious, historical and architectural assets.
Monitoring the time history of structures and infrastructures has always been an important area of application of geodetic and geomatic methods. Here we shall concentrate on the item of monitoring ancient buildings because, beyond its intrinsic interest, it provides a good illustration of some of the most recent monitoring techniques. Identifying the overhang, progressive changes of inclination, differential movements of the structure and detailing the study of structural elements are just some examples of the many fundamental and necessary information for structural engineers. Those data are required to study and analyze the behavior of a structure with the purpose to assess the stability. Looking at the several methods offered by Geomatics, laser scanning appears to be the best technology to provide an effective 3D solution to those requirements. Surveying by means of a terrestrial laser scanner, allows to detect a huge number of 3D information with high accuracy in a relatively short time and high accuracy. Just analyzing the point clouds, interesting information along with useful products can be obtained in order to draw some considerations about the investigated structure. This research aims at suggesting a new philosophy for using 3D models in a diagnostic perspective in order to study structures along with their actual dimensions, their stability and so on. Traditionally, indeed, laser scanning is chosen for artistic and architectural studies and the resulting three-dimensional model represents what often is of concern. Furthermore, the use of more classic techniques, such as total station and digital leveling, and LST is fundamental as an integrated approach for the monitoring of ancient buildings. The integration of different techniques allow a redundancy of observation and the possibility to verify the results obtained form independent techniques as is shown throughout some experimental applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.