[1] A distributed physically based model incorporating novel approaches for the representation of surface-subsurface processes and interactions is presented. A path-based description of surface flow across the drainage basin is used, with several options for identifying flow directions, for separating channel cells from hillslope cells, and for representing stream channel hydraulic geometry. Lakes and other topographic depressions are identified and specially treated as part of the preprocessing procedures applied to the digital elevation data for the catchment. Threshold-based boundary condition switching is used to partition potential (atmospheric) fluxes into actual fluxes across the land surface and changes in surface storage, thus resolving the exchange fluxes, or coupling, between the surface and subsurface modules. Nested time stepping allows smaller steps to be taken for typically faster and explicitly solved surface runoff routing, while a mesh coarsening option allows larger grid elements to be used for typically slower and more compute-intensive subsurface flow. Sequential data assimilation schemes allow the model predictions to be updated with spatiotemporal observation data of surface and subsurface variables. These approaches are discussed in detail, and the physical and numerical behavior of the model is illustrated over catchment scales ranging from 0.0027 to 356 km 2 , addressing different hydrological processes and highlighting the importance of describing coupled surfacesubsurface flow.Citation: Camporese, M., C. Paniconi, M. Putti, and S. Orlandini (2010), Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data, Water Resour.
[1] Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models are presented. These methods extend the descriptive capabilities of the classical D8 method by cumulating the deviations between selected and theoretical drainage directions along the drainage paths. It is shown that either angular or transversal deviations can be employed. Accordingly, two classes of methods designated D8-LAD (eight drainage directions, least angular deviation) and D8-LTD (eight drainage directions, least transversal deviation) are developed. Detailed tests on four synthetic drainage systems of known geometry and on the Liro catchment (central Italian Alps) indicate that the proposed methods provide significant improvement over the D8 method for the determination of drainage directions and drainage areas.
[1] Threshold conditions for channel initiation are evaluated by using gridded elevation data derived from a lidar survey, a reliable algorithm for the determination of surface flow paths, and field observations of channel heads for a study area located in the eastern Italian Alps. These threshold conditions are determined by considering the channel heads observed across a portion of the study area and computing the related values of (1) drainage area A, (2) area-slope function AS 2 , with S being the local slope, and (3) Strahler order ! Ã of surface flow paths extracted from gridded elevation data. Attention is focused on the dependence of the obtained threshold values on the size of grid cells involved and on the ability of the identified threshold conditions to provide reliable predictions of channel heads across the entire study area. The results indicate that the threshold values of A, AS 2 , and ! Ã are all significantly dependent on grid cell size, and the uncertainty in the determination of threshold values of ! Ã is significantly smaller than that affecting the determination of threshold values of A and AS 2 . The comparison between predicted and observed channel heads indicates that the considered methods display variable reliability and sensitivity over different drainage basins and grid cell sizes, with a general tendency to predict more channel heads than can be observed in the field. Acceptable predictions are normally obtained where channel heads are formed essentially by surface runoff. More comprehensive methods seem, however, to be needed to predict channel heads affected by groundwater seeping upward.
[1] Surface flow paths are obtained from gridded elevation data by connecting grid cell centers along predetermined flow directions. These flow directions are commonly determined using single and multiple flow direction algorithms. It remains, however, unclear whether multiple flow direction algorithms, which introduce artificial dispersion, can be used to describe surface flow paths and gravity-driven processes across a terrain without causing unrealistic flow dispersion. To explore this issue, a unified algorithm for the determination of flow directions has been developed, and new methods for the validation of the resulting surface flow paths are introduced. The unified algorithm makes it possible, by setting appropriate parameters, to perform local or path-based analyses and to experiment with different combinations of single and multiple flow directions in a morphologically significant manner. The new validation methods use drainage systems delineated from contour elevation data as a reference and take into consideration the overlap between these systems and those obtained from gridded elevation data. The unified algorithm is presented, and the results are evaluated for selected case studies in order to provide guidance on the use of surface flow path algorithms based on gridded elevation data.
A levee failure occurred along the Secchia River, Northern Italy, on 19 January 2014, resulting in flood damage in excess of $500 million. In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging levee failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10 cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. This paper uses detailed numerical modeling of rainfall, river flow, and variably saturated flow in the levee to explore the hydraulic and geotechnical mechanisms that were triggered along the Secchia and Panaro Rivers by activities of burrowing animals leading to levee failures. As habitats become more fragmented and constrained along river corridors, it is possible that this failure mechanism could become more prevalent and, therefore, will demand greater attention in both the design and maintenance of earthen hydraulic structures as well as in wildlife management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.