The differentiation of fibroblasts into a transient population of highly activated, extracellular matrix (ECM)–producing myofibroblasts at sites of tissue injury is critical for normal tissue repair. Excessive myofibroblast accumulation and persistence, often as a result of a failure to undergo apoptosis when tissue repair is complete, lead to pathological fibrosis and are also features of the stromal response in cancer. Myofibroblast differentiation is accompanied by changes in cellular metabolism, including increased glycolysis, to meet the biosynthetic demands of enhanced ECM production. Here, we showed that transforming growth factor–β1 (TGF-β1), the key pro-fibrotic cytokine implicated in multiple fibrotic conditions, increased the production of activating transcription factor 4 (ATF4), the transcriptional master regulator of amino acid metabolism, to supply glucose-derived glycine to meet the amino acid requirements associated with enhanced collagen production in response to myofibroblast differentiation. We further delineated the signaling pathways involved and showed that TGF-β1–induced ATF4 production depended on cooperation between canonical TGF-β1 signaling through Smad3 and activation of mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). ATF4, in turn, promoted the transcription of genes encoding enzymes of the de novo serine-glycine biosynthetic pathway and glucose transporter 1 (GLUT1). Our findings suggest that targeting the TGF-β1–mTORC1–ATF4 axis may represent a novel therapeutic strategy for interfering with myofibroblast function in fibrosis and potentially in other conditions, including cancer.
ERp44 mediates thiol-dependent retention in the early secretory pathway, forming mixed disulphides with substrate proteins through its conserved CRFS motif. Here, we present its crystal structure at a resolution of 2.6 Å . Three thioredoxin domains-a, b and b 0 -are arranged in a clover-like structure. A flexible carboxy-terminal tail turns back to the b 0 and a domains, shielding a hydrophobic pocket in domain b 0 and a hydrophobic patch around the CRFS motif in domain a. Mutational and functional studies indicate that the C-terminal tail gates the CRFS area and the adjacent hydrophobic pocket, dynamically regulating protein quality control.
Alpha1-antitrypsin (AAT) deficiency is a hereditary disorder associated with reduced AAT plasma levels, predisposing adults to pulmonary emphysema. The most common genetic AAT variants found in patients are the mildly deficient S and the severely deficient Z alleles, but several other pathogenic rare alleles have been reported. While the plasma AAT deficiency is a common trait of the disease, only a few AAT variants, including the prototypic Z AAT and some rare variants, form cytotoxic polymers in the endoplasmic reticulum of hepatocytes and predispose to liver disease. Here we report the identification of three new rare AAT variants associated to reduced plasma levels and characterize their molecular behaviour in cellular models. The variants, called Mpisa (Lys259Ile), Etaurisano (Lys368Glu) and Yorzinuovi (Pro391His), showed reduced secretion compared to control M AAT, and accumulated to different extents in the cells as ordered polymeric structures resembling those formed by the Z variant. Structural analysis of the mutations showed that they may facilitate polymerization both by loosening ‘latch’ interactions constraining the AAT reactive loop and through effects on core packing. In conclusion, the new AAT deficiency variants, besides increasing the risk of lung disease, may predispose to liver disease, particularly if associated with the common Z variant. The new mutations cluster structurally, thus defining a region of the AAT molecule critical for regulating its conformational state.
Mutations in alpha1-antitrypsin (AAT) can cause the protein to polymerise and be retained in the endoplasmic reticulum (ER) of hepatocytes. The ensuing systemic AAT deficiency leads to pulmonary emphysema, while intracellular polymers are toxic and cause chronic liver disease. The severity of this process varies considerably between individuals, suggesting the involvement of mechanistic co-factors and potential for therapeutically beneficial interventions. We show in Hepa1.6 cells that the mildly polymerogenic I (Arg39Cys) AAT mutant forms aberrant inter- and intra-molecular disulphide bonds involving the acquired Cys39 and the only cysteine residue in the wild-type (M) sequence (Cys232). Substitution of Cys39 to serine partially restores secretion, showing that disulphide bonding contributes to the intracellular retention of I AAT. Covalent homodimers mediated by inter-Cys232 bonding alone are also observed in cells expressing the common Z and other polymerising AAT variants where conformational behaviour is abnormal, but not in those expressing M AAT. Prevention of such disulphide linkage through the introduction of the Cys232Ser mutation or by treatment of cells with reducing agents increases Z AAT secretion. Our results reveal that disulphide interactions enhance intracellular accumulation of AAT mutants and implicate the oxidative ER state as a pathogenic co-factor. Redox modulation, e.g. by anti-oxidant strategies, may therefore be beneficial in AAT deficiency-associated liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.