With the tools and perspective of Object Oriented Spatial Statistics, we analyze official daily data on mortality from all causes in the provinces and municipalities of Italy for the year 2020, the first of the COVID-19 pandemic. By comparison with mortality data from 2011 to 2019, we assess the local impact of the pandemic as perturbation factor of the natural spatio-temporal death process. For each Italian province and year, mortality data are represented by the densities of time of death during the calendar year. Densities are regarded as functional data belonging to the Bayes space
In this space, we use functional-on-functional linear models to predict the expected mortality in 2020, based on mortality in previous years, and we compare predictions with actual observations, to assess the impact of the pandemic. Through spatial downscaling of the provincial data down to the municipality level, we identify spatial clusters characterized by mortality densities anomalous with respect to the surroundings. The proposed analysis pipeline could be extended to indexes different from death counts, measured at a granular spatio-temporal scale, and used as proxies for quantifying the local disruption generated by the pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.