Mobile devices can be maliciously exploited to violate the privacy of people. In most attack scenarios, the adversary takes the local or remote control of the mobile device, by leveraging a vulnerability of the system, hence sending back the collected information to some remote web service. In this paper, we consider a different adversary, who does not interact actively with the mobile device, but he is able to eavesdrop the network traffic of the device from the network side (e.g., controlling a Wi-Fi access point). The fact that the network traffic is often encrypted makes the attack even more challenging. In this paper, we investigate to what extent such an external attacker can identify the specific actions that a user is performing on her mobile apps. We design a system that achieves this goal using advanced machine learning techniques. We built a complete implementation of this system, and we also run a thorough set of experiments, which show that our attack can achieve accuracy and precision higher than 95%, for most of the considered actions. We compared our solution with the three state-of-the-art algorithms, and confirming that our system outperforms all these direct competitors
Abstract-The apps installed on a smartphone can reveal much information about a user, such as their medical conditions, sexual orientation, or religious beliefs. Additionally, the presence or absence of particular apps on a smartphone can inform an adversary who is intent on attacking the device. In this paper, we show that a passive eavesdropper can feasibly identify smartphone apps by fingerprinting the network traffic that they send. Although SSL/TLS hides the payload of packets, sidechannel data such as packet size and direction is still leaked from encrypted connections. We use machine learning techniques to identify smartphone apps from this side-channel data. In addition to merely fingerprinting and identifying smartphone apps, we investigate how app fingerprints change over time, across devices and across different versions of apps. Additionally, we introduce strategies that enable our app classification system to identify and mitigate the effect of ambiguous traffic, i.e., traffic in common among apps such as advertisement traffic. We fully implemented a framework to fingerprint apps and ran a thorough set of experiments to assess its performance. We fingerprinted 110 of the most popular apps in the Google Play Store and were able to identify them six months later with up to 96% accuracy. Additionally, we show that app fingerprints persist to varying extents across devices and app versions.
Identifying the true identity of a subject in the absence of external verification criteria (documents, DNA, fingerprints, etc.) is an unresolved issue. Here, we report an experiment on the verification of fake identities, identified by means of their specific keystroke dynamics as analysed in their written response using a computer keyboard. Results indicate that keystroke analysis can distinguish liars from truth tellers with a high degree of accuracy - around 95% - thanks to the use of unexpected questions that efficiently facilitate the emergence of deception clues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.