Mutations in the PINK1 gene cause autosomal recessive Parkinson's disease. The PINK1 gene encodes a protein kinase that is mitochondrially cleaved to generate two mature isoforms. In addition to its protective role against mitochondrial dysfunction and apoptosis, PINK1 is also known to regulate mitochondrial dynamics acting upstream of the PD-related protein Parkin. Recent data showed that mitochondrial Parkin promotes the autophagic degradation of dysfunctional mitochondria, and that stable PINK1 silencing may have an indirect role in mitophagy activation. Here we report a new interaction between PINK1 and Beclin1, a key pro-autophagic protein already implicated in the pathogenesis of Alzheimer's and Huntington's diseases. Both PINK1 N-and C-terminal are required for the interaction, suggesting that full-length PINK1, and not its cleaved isoforms, interacts with Beclin1. We also demonstrate that PINK1 significantly enhances basal and starvation-induced autophagy, which is reduced by knocking down Beclin1 expression or by inhibiting the Beclin1 partner Vps34. A mutant, PINK1 W437X , interaction of which with Beclin1 is largely impaired, lacks the ability to enhance autophagy, whereas this is not observed for PINK1 G309D , a mutant with defective kinase activity but unaltered ability to bind Beclin1. These findings identify a new function of PINK1 and further strengthen the link between autophagy and proteins implicated in the neurodegenerative process. Parkinson's disease (PD) is a frequent neurodegenerative disorder resulting from massive degeneration of the dopaminergic neurons in the substantia nigra. Although most cases are sporadic, several genes are known to cause familial PD, especially with early onset. 1 Mutations in the PINK1 gene are the second most frequent cause of autosomal recessive PD after those in the Parkin gene. 2,3 The PINK1 gene encodes a serine-threonine kinase with an N-terminal mitochondrial import sequence, first characterized as a protein aimed at maintaining mitochondrial integrity and preventing apoptosis in response to cellular stressors. 2,[4][5][6][7][8] This neuroprotective role is partly exerted through phosphorylation of the mitochondrial chaperon, TRAP1, although cytoplasm-restricted PINK1 was also shown to protect against MPTP damage. 9,10 The full-length PINK1 (PINK1-FL) is processed within mitochondria to generate two mature proteins; 4,11 all three isoforms localize both to the mitochondria and cytosol, their relative ratio being regulated by several factors. [10][11][12][13] Increasing data have demonstrated that absence of functional PINK1 induces abnormalities of mitochondrial morphology. 6,14,15 In several studies (mostly in Drosophila), PINK1 was shown to promote fission acting upstream of the Fis1-Drp1 machinery, and the mitochondrial phenotype observed in PINK1 knockout flies or silenced cells was associated to reduced fission. 16,17 Subsequent studies in mammalian cell systems contradicted these results, demonstrating that mutant or silenced PINK1 resulted in incre...
Communication between embryo and maternal endometrium occurs during a specific time frame in which implantation is possible. Here we demonstrate for the first time that conditioned media from non-manipulated human embryos cultured in vitro for 3 days or up to the blastocyst stage contain extracellular vesicles (EVs) with a diameter of 50 to 200 nm and bearing the traditional microvesicle and exosome marker proteins CD63, CD9 and ALIX. The embryonic origin of these EVs has been confirmed by the presence of stemness gene transcripts and their enrichment in the non-classical HLA-G protein. NANOG and POU5F1 transcripts were shown to be contained in vesicles deriving from embryos at different stages of development. In line with a higher detection rate of the HLA-G protein in blastocysts compared to cleavage stage embryos, a significantly higher amount of HLA-G was found in vesicles accumulated in spent media from day 3 to day 5 of development compared to those isolated from the earlier stage. Uptake of dye-labeled embryo-derived EVs by human primary endometrial epithelial and stromal cells was also demonstrated with a fluorescence intensity signal significantly higher for cells treated with vesicles derived from blastocysts. Based on these findings, EV exchange may be suggested as an emerging way of communication at the maternal-fetal interface.Since the first gestation reported in 1976 1 , more than five million pregnancies have been achieved worldwide by in vitro fertilization and its modifications, known generically as assisted reproductive technologies (ARTs). Currently, ART accounts for 1 to 3 percent of live births in the United States and Europe. Despite significant advances in the understanding of infertility mechanisms and the overcoming of many deficiencies in human fertility by evolving ART, the number of 'take-home' babies still remains low 2 . Research in this area is moving toward the improvement of success rates through a better understanding of embryo and uterine physiology 3 .Embryo implantation and consequent pregnancy is thought to involve a two-way communication between maternal uterus and the blastocyst, a dialogue whose success seems essential for the progression through the processes of embryo apposition, adhesion, attachment and penetration [4][5][6] . Some embryonic signals modulating this dialogue have been identified 7-9 . Among them, human chorionic gonadotrophin synthesized early by the trophoblast cells acts on the uterine environment via the luteinizing hormone/hCG receptor and exerts both autocrine effects, promoting differentiation 10 and migration of trophoblasts 11 , and paracrine effects on the maternal endometrium 12 . Another molecule identified in embryo culture media and supposed to be involved in the regulation of local maternal immune response is represented by sHLA-G 13 . HLA-G1/G5 protein expression has been detected in human preimplantation embryos in association with β2-microglobulin and the soluble spliced isoform has been proposed as a noninvasive tool for embryo select...
In late 2019, the betacoronavirus SARS-CoV-2 was identified as the viral agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. Coronaviruses Spike proteins are responsible for their ability to interact with host membrane receptors and different proteins have been identified as SARS-CoV-2 interactors, among which Angiotensin-converting enzyme 2 (ACE2), and Basigin2/EMMPRIN/CD147 (CD147). CD147 plays an important role in human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, Kaposi’s sarcoma-associated herpesvirus, and severe acute respiratory syndrome coronavirus infections. In particular, SARS-CoV recognizes the CD147 receptor expressed on the surface of host cells by its nucleocapsid protein binding to cyclophilin A (CyPA), a ligand for CD147. However, the involvement of CD147 in SARS-CoV-2 infection is still debated. Interference with both the function (blocking antibody) and the expression (knock down) of CD147 showed that this receptor partakes in SARS-CoV-2 infection and provided additional clues on the underlying mechanism: CD147 binding to CyPA does not play a role; CD147 regulates ACE2 levels and both receptors are affected by virus infection. Altogether, these findings suggest that CD147 is involved in SARS-CoV-2 tropism and represents a possible therapeutic target to challenge COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.