Coastal landscapes like coastal plains and river deltas are complex and dynamic depositional environments. They were formed over the last centuries to millennia by the deposition of inorganic and organic sediments transported seaward by rivers and delivered by flooding or produced by the decomposition of the local vegetation (Milliman & Farnsworth, 2011;Mudd et al., 2009). These dynamic environments are widespread around the world and play important socio-economic and ecological roles. They host industrial and agricultural activities, megalopolises with tens million inhabitants (Ericson et al., 2006;Seto, 2011), and also pristine natural environments considered the Earth's richest ecosystems and fundamental for biodiversity preservation (Barbier et al., 2011;Schindler et al., 2016). They host landforms such as wetlands, marshes, lagoons, oxbow lakes, and backswamps, which flood periodically or are permanently inundated, resulting in waterlogged soil conditions (Bridge, 2003;Dunne & Aalto, 2013). Their evolution is fundamentally controlled by the balance between the creation and filling of available three-dimensional (3D) accommodation space, as controlled by antecedent topography, tectonics, sea-level
<p>Depositional landforms, such as tidal marshes and deltas, formed by sediment deposition over the last centuries to millennia. They are complex, vulnerable, and dynamic systems with important roles from environmental and human points of view. The survival of these lowlying landforms is threatened by multiple stressors, e.g. sea level rise and reduction in sediment supply. In addition to these external factors, natural compaction of the sedimentary bodies may have an important role on the elevation dynamics because of the large porosity and compressibility that characterize the shallow deposits. A three-dimensional (3D) finite element simulator (NATSUB3D) has been recently developed to model the long-term dynamics of transitional landforms. The model couples a 3D groundwater flow module to compute over-pressure dissipation with a 1D compaction module based on the elasto-plastic Terzaghi theory. NATSUB3D properly accounts large deformations thanks to an accreting/compacting mesh that follows the grain movements (Lagrangian approach). The NATSUB3D formulation is updated to account for viscous deformations using the NEN-Bjerrum constitutive relationship. Indeed, creep may represent an important process in fine unconsolidated deposits forming Holocene coastal landforms. With the new constitutive model, soil deformation is effective stress and time dependent. The new simulator has been applied on 1D synthetic cases mimicking long-term accretion of sedimentary columns. Hydro-geomechanical properties typical of sediment classes composing depositional landforms are used. A sensitivity analysis has been performed on sedimentation rates and secondary compression coefficients, which are the main parameters affecting the viscous deformation, leading to significantly different elevation dynamics. In the simulation of these processes (i.e., the formation of a sedimentary landform), the overconsolidation ratio (OCR), which is the geomechanical parameter most difficult to quantify and highly impacting soil compaction, can be simply set equal to 1 for the newly formed soil layer. Indeed, OCR is then properly updated by the model itself because the simulation follows the soil deformation since time of sediment deposition, with soil experiencing compaction because new sedimentation occurs on the landform top.</p>
<p>Accurate land subsidence quantifications are of growing importance as relative sea-level rise in unconsolidated coastal environments is increasingly dominated by subsidence. Land subsidence, especially in unconsolidated settings, is the result of a complex interplay and sum of a range of different subsurface processes. As these processes can be spatially and temporally very variable, it requires more than (point and/or land surface) measurements to accurately quantify subsidence, especially when projections of subsidence are required for example to assess future relative sea-level rise. This requires first of all a thorough understanding of subsidence drivers and subsurface processes in a 4D perspective (3D including time) and secondly data interpretation methods and tools to handle the complex coupling of these interrelated processes to enable spatial-temporal quantification and projection of coastal subsidence.</p><p>We present a set of novel approaches, with which we aim to move our capacity to accurately capture and simulate the highly dynamic behaviour of subsidence processes. The approaches range from novel field experiments to advanced interpretation of sedimentary information in coastal-deltaic setting to gain important input for numerical modelling, and to newly-developed state-of-the-art 3D numerical simulators. Through these combined methodologies we aim to improve our capacity to assess both natural subsidence processes, like natural compaction, and anthropogenic-induced processes, like aquifer-system compaction following overexploitation in unconsolidated settings. This will ultimately contribute, for example through scenario modelling of anthropogenic drivers, to create reliable future projections of land subsidence which will enable sound projections of relative sea-level rise.</p>
<p>Tidal marshes are vulnerable and dynamic ecosystems with essential roles from protection against marine storms to biodiversity preservation. However, the survival of these environments is threatened by external stressors such as increasing mean sea level, reduction in sediment supply, and erosion. Tidal marshes are formed by deposition over the last centuries to millennia of sediments transported by surface water and biodegradation of organic matter derived from halophytic vegetation. Therefore, the sediment at the surface is characterized by high porosity and their large consolidation potential plays an important role in the future elevation dynamics, which is often not fully recognized.</p><p>Here we propose a novel three-dimensional numerical model to simulate the long-term dynamics of tidal marshes. A 3D groundwater flow equation in saturated conditions is implemented to compute the over-pressure dissipation with the aid of the finite element (FE) method, whereas the sediment consolidation is computed according to Terzaghi's theory.</p><p>A Lagrangian approach is implemented in the FE numerical model to properly consider the large soil deformation arising from the deposition of highly compressible material. The hydro-geomechanical properties, that depend on the intergranular effective stress, are highly non-linear.</p><p>The model takes advantage of a dynamic mesh that simulates the evolution of the landform elevation by means of an accretion/compaction mechanism: the elements deform in time as the soil consolidates and increase in number as the new sediments deposit over the marsh surface. The deposition is treated as input to the consolidation model and can vary in space and time.</p><p>The model is applied to simulate the long-term evolution of realistic tidal marshes in terms of accretion and consolidation due to the coupled dynamics of surficial and subsurface processes.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.