Great technologic and clinical progress have been made in the last two decades in identifying genetic defects of several neuromuscular diseases, as Spinal Muscular Atrophy, genetic muscular dystrophies and other genetic myopathies. The diagnosis is usually challenging, due to great variability in genetic abnormalities and clinical phenotypes and the poor specificity of complementary analyses, i.e., serum creatine kinase (CK) and electrophysiology. Muscle biopsy represents the gold standard for the diagnosis of genetic neuromuscular diseases, but clinical imaging of muscle tissue is an important diagnostic tool to identify and quantifyies muscle damage. Radiologic imaging is, indeed, increasingly used as a diagnostic tool to describe patterns and the extent of muscle involvement, thanks to modern techniques that enable to definethe definition of degrees of muscle atrophy and changes in connective tissue. They usually grade the severity of the disease process with greater accuracy than clinical scores. Clinical imaging is more than complementary to perform muscle biopsy, especially as ultrasound scans are often mandatory to identify the muscle to be biopsied. We will here detail and provideWe will herein provide detailed examples of the radiologic methods that can be used in genetic and acquired neuromuscular disorders, stressing pros and cons. Key Words: Muscle Imaging, MRI, CT, genetic muscle disorders, myopathies, dystrophies
Great technologic and clinical progress have been made in the last two decades in identifying genetic defects of several neuromuscular diseases, as Spinal Muscular Atrophy, genetic muscular dystrophies and other genetic myopathies. The diagnosis is usually challenging, due to great variability in genetic abnormalities and clinical phenotypes and the poor specificity of complementary analyses, i.e., serum creatine kinase (CK) and electrophysiology. Muscle biopsy represents the gold standard for the diagnosis of genetic neuromuscular diseases, but clinical imaging of muscle tissue is an important diagnostic tool to identify and quantifyies muscle damage. Radiologic imaging is, indeed, increasingly used as a diagnostic tool to describe patterns and the extent of muscle involvement, thanks to modern techniques that enable to definethe definition of degrees of muscle atrophy and changes in connective tissue. They usually grade the severity of the disease process with greater accuracy than clinical scores. Clinical imaging is more than complementary to perform muscle biopsy, especially as ultrasound scans are often mandatory to identify the muscle to be biopsied. We will here detail and provideWe will herein provide detailed examples of the radiologic methods that can be used in genetic and acquired neuromuscular disorders, stressing pros and cons.
This work reviews history, current clinical relevance and future of fibrillation, a functional marker of skeletal muscle denervated fibers. Fibrillations, i.e., spontaneous contraction, in denervated muscle were first described during the nineteenth century. It is known that alterations in membrane potential are responsible for the phenomenon and that they are related to changes in electrophysiological factors, cellular metabolism, cell turnover and gene expression. They are known to inhibit muscle atrophy to some degree and are used to diagnose neural injury and reinnervation that are occurring in patients. Electromyography (EMG) is useful in determining progress, prognosis and efficacy of therapeutic interventions and their eventual change. For patients with peripheral nerve injury, and thus without the option of volitional contractions, electrical muscle stimulation may be helpful in preserving the contractility and extensibility of denervated muscle tissue and in retarding/counteracting muscle atrophy. It is obvious from the paucity of recent literature that research in this area has declined over the years. This is likely a consequence of the decrease in funding available for research and the fact that the fibrillations do not appear to cause serious health issues. Nonetheless, further exploration of them as diagnostic tools in long-term denervation is merited, in particular if Single Fiber EMG (SFEMG) is combined with Dynamic Echomyography (DyEM), an Ultra Sound muscle approach we recently designed and developed to explore denervated and reinnervating muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.