This work presents a feasibility lab-scale study for a new preservation method to inactivate microorganisms and increase the shelf life of pre-packed fresh-cut products. Experiments were conducted on coriander leaves and fresh-cut carrots and coconut. The technology used the combination of hydrostatic pressure (<15 MPa), low temperature (≤45 °C), and CO2 modified atmosphere packaging (MAP). The inactivation was achieved for the naturally present microorganisms (total mesophilic bacteria, yeasts and molds, total coliforms) and inoculated E. coli. Yeasts and molds and coliform were under the detection limit in all the treated samples, while mesophiles were strongly reduced, but below the detection limit only in carrots. Inoculated E. coli strains were completely inactivated (>6.0 log CFU/g) on coconut, while a reduction >4.0 log CFU/g was achieved for carrots and coriander. For all the treated products, the texture was similar to the fresh ones, while a small alteration of color was detected. Microbiological stability was achieved for up to 14 days for both fresh-cut carrots and coconut. Overall, the results are promising for the development of a new mild and innovative food preservation technique for fresh food.
Fresh chicken meat is a very perishable good, even at refrigerated storage conditions, due to psychrophilic microbial growth and physicochemical changes. The present study focuses on the use of rosemary (Rosmarinus officinalis L.) essential oil (REO), supercritical CO2 processing and their synergism to increase the microbial inactivation in chicken breast meat. E. coli and L. innocua were inoculated on the chicken breast surface, and the inactivation effects of two different processes, namely SC-CO2 and SC-MAPCO2, were compared with or without the addition of REO. Moreover, the impact of the treatments on the superficial color of the meat was considered. The study demonstrated a synergic effect with 1% REO and supercritical CO2 for the inactivation of E. coli on chicken meat, while for L. innocua, there was no synergism. Regarding SC-CO2 treatment, the E. coli reduction was 1.29 and 3.31 log CFU/g, while for L. innocua, it was 1.42 and 1.11 log CFU/g, respectively, without and with the addition of 1.0% of REO. The same amount of REO allowed us to obtain a reduction of 1.3 log CFU/g of E. coli when coupled with SC-MAPCO2. For L. innocua, no reduction was obtained, either with SC-MAPCO2 or together with REO. The synergism of SC-MAPCO2 with 1% REO was confirmed for the total psychrophilic bacteria, demonstrating a strong dependence on the microorganism. The color modification induced by the SC-MAPCO2 process was lower than the SC-CO2 treatment. Overall, this study demonstrated a possible synergism of the technologies which can support the development of innovative methods to improve the safety and shelf-life of chicken breast meat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.