Genetic association studies have identified 215 risk loci for inflammatory bowel disease 1–8, which have revealed fundamental aspects of its molecular biology. We performed a genome-wide association study of 25,305 individuals, and meta-analyzed with published summary statistics, yielding a total sample size of 59,957 subjects. We identified 25 new loci, three of which contain integrin genes that encode proteins in pathways identified as important therapeutic targets in inflammatory bowel disease. The associated variants are correlated with expression changes in response to immune stimulus at two of these genes (ITGA4, ITGB8) and at previously implicated loci (ITGAL, ICAM1). In all four cases, the expression increasing allele also increases disease risk. We also identified likely causal missense variants in the primary immune deficiency gene PLCG2 and a negative regulator of inflammation, SLAMF8. Our results demonstrate that new common variant associations continue to identify genes relevant to therapeutic target identification and prioritization.
BACKGROUND & AIMS: Anti-tumor necrosis factor (anti-TNF) therapies are the most widely used biologic drugs for treating immune-mediated diseases, but repeated administration can induce the formation of anti-drug antibodies. The ability to identify patients at increased risk for development of anti-drug antibodies would facilitate selection of therapy and use of preventative strategies. METHODS: We performed a genomewide association study to identify variants associated with time to development of anti-drug antibodies in a discovery cohort of 1240 biologic-naïve patients with Crohn's disease starting infliximab or adalimumab therapy. Immunogenicity was defined as an anti-drug antibody titer !10 AU/mL using a drug-tolerant enzyme-linked immunosorbent assay. Significant association signals were confirmed in a replication cohort of 178 patients with inflammatory bowel disease. RESULTS: The HLA-DQA1*05 allele, carried by approximately 40% of Europeans, significantly increased the rate of immunogenicity (hazard ratio [HR], 1.90; 95% confidence interval [CI], 1.60-2.25; P ¼ 5.88 Â 10-13). The highest rates of immunogenicity, 92% at 1 year, were observed in patients treated with infliximab monotherapy who carried HLA-DQA1*05; conversely the lowest rates of immunogenicity, 10% at 1 year, were observed in patients treated with adalimumab combination therapy who did not carry HLA-DQA1*05. We confirmed this finding in the replication cohort (HR, 2.00; 95% CI, 1.35-2.98; P ¼ 6.60 Â 10-4). This association was consistent for patients treated with adalimumab (HR, 1.89; 95% CI, 1.32-2.70) or infliximab (HR, 1.92; 95% CI, 1.57-2.33), and for patients treated with anti-TNF therapy alone
There are thousands of rare human disorders caused by a single deleterious, protein-coding genetic variant1. However, patients with the same genetic defect can have different clinical presentations2–4, and some individuals carrying known disease-causing variants can appear unaffected5. What explains these differences? Here, we study a cohort of 6,987 children assessed by clinical geneticists to have severe neurodevelopmental disorders, such as global developmental delay and autism, often with abnormalities of other organ systems. While the genetic causes of these neurodevelopmental disorders are expected to be almost entirely monogenic, we show that 7.7% of variance in risk is attributable to inherited common genetic variation. We replicated this genome wide common variant burden by showing that it is over-transmitted from parents to children with neurodevelopmental disorders in an independent sample of 728 trios from the same cohort. Our common variant signal is significantly positively correlated with genetic predisposition to fewer years of schooling, decreased intelligence, and risk of schizophrenia. We found that common variant risk was not significantly different between individuals with and without a known protein-coding diagnostic variant, suggesting that common variant risk is not confined to patients without a monogenic diagnosis. In addition, previously published common variant scores for autism, height, birth weight, and intracranial volume were all correlated with those traits within our cohort, suggesting that phenotypic expression in individuals with monogenic disorders is affected by the same variants as the general population. Our results demonstrate that common genetic variation affects both overall risk and clinical presentation in neurodevelopmental disorders typically considered to be monogenic.
Protein-truncating variants protective against human disease provide in vivo validation of therapeutic targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring protection against inflammatory bowel disease exploiting knowledge of common variants associated with the same disease. Through replication genotyping and imputation we found that a predicted protein-truncating variant (rs36095412, p.R179X, genotyped in 11,148 ulcerative colitis patients and 295,446 controls, MAF=up to 0.78%) in RNF186, a single-exon ring finger E3 ligase with strong colonic expression, protects against ulcerative colitis (overall P=6.89 × 10−7, odds ratio=0.30). We further demonstrate that the truncated protein exhibits reduced expression and altered subcellular localization, suggesting the protective mechanism may reside in the loss of an interaction or function via mislocalization and/or loss of an essential transmembrane domain.
SummaryBackgroundAnti-tumour necrosis factor (anti-TNF) therapies are the most widely used biologic therapies for treating immune-mediated diseases. Their efficacy is significantly reduced by the development of anti-drug antibodies which can lead to treatment failure and adverse reactions. The biological mechanisms underlying antibody development are unknown but the ability to identify subjects at higher risk would have significant clinical benefits.MethodsThe PANTS cohort consists of Crohn’s disease patients recruited prior to first administration of anti-TNF, with serial measurements of anti-drug antibody titres. We performed a genome-wide association study across 1240 individuals from this cohort to identify genetic variants associated with anti-drug antibody development.FindingsThe Human Leukocyte Antigen allele, HLA-DQA1*05, carried by approximately 40% of Europeans, significantly increased the rate of anti-drug antibody development (hazard ratio [HR], 1.90; 95% confidence interval [CI], 1.60 to 2.25; P=5.88×10-13). This association was consistent for patients treated with adalimumab (HR, 1.89; 95% CI, 1.32 to 2.70) and infliximab (HR, 1.92; 95% CI, 1.57 to 2.33), and for patients treated with mono-(HR, 1.75; 95% CI, 1.37 to 2.22) or combination therapy with immunomodulators (HR, 2.0; 95% CI, 1.57 to 2.58).InterpretationHLA-DQA1*05 is significantly associated with an increased rate of anti-drug antibody formation in patients with Crohn’s disease treated with infliximab and adalimumab. Pre-treatment HLA-DQA1*05 genetic testing may help personalise the choice of anti-TNF therapy and allow the targeted use of immunomodulator therapy to minimise risk and maximise response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.