from the environment to blend in and match other objects, as exemplifi ed by decorator crabs and caddis fl y larvae. How is camoufl age connected to animal cognition? Cognitive processes also infl uence what makes an effective camoufl age, beyond sensory processing (such as visual detection). As the brain may interpret stimuli differently, it may affect predator behavior and thus have consequences on camoufl age effi cacy. Predators have been shown to be worse at fi nding camoufl aged prey when prey populations are polymorphic in appearance. This is because under some conditions predators concentrate on prey types that they have recent experience with, forming 'search images' for these and thus overlooking the rare morphs. As a result, negative frequencydependent selection can maintain polymorphic prey and fl uctuations in morph frequency. Learning and cognitive processes may also have a major effect on the value of different camoufl age strategies. Predators learn some types of camoufl age more quickly than others, especially those involving high contrast patterns. The value of a given type of camoufl age thus depends not just on initial detection, but also on predator experience and cognition. Where can I fi nd out more?
Dopamine plays a central role in motivating and modifying behavior, serving to invigorate current behavioral performance and guide future actions through learning. Here we examine how this single neuromodulator can contribute to such diverse forms of behavioral modulation. By recording from the dopaminergic reinforcement pathways of the Drosophila mushroom body during active odor navigation, we reveal how their ongoing motor-associated activity relates to goal-directed behavior. We find that dopaminergic neurons correlate with different behavioral variables depending on the specific navigational strategy of an animal, such that the activity of these neurons preferentially reflects the actions most relevant to odor pursuit. Furthermore, we show that these motor correlates are translated to ongoing dopamine release and acutely perturbing dopaminergic signaling alters the strength of odor tracking. Context-dependent representations of movement and reinforcement cues are thus multiplexed within the mushroom body dopaminergic pathways, enabling them to coordinately influence both ongoing and future behavior.
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, “infotaxis”, in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in natural plume tracking.
Many sequenced behaviors, including locomotion, reaching, and vocalization, are patterned differently in different contexts, enabling animals to adjust to their current environments. However, how contextual information shapes neural activity to flexibly alter the patterning of actions is not yet understood. Prior work indicates such flexibility could be achieved via parallel motor circuits, with differing sensitivities to sensory context [1, 2, 3]; instead we demonstrate here how a single neural pathway operates in two different regimes dependent on recent sensory history. We leverage the Drosophila song production system [4] to investigate the neural mechanisms that support male song sequence generation in two contexts: near versus far from the female. While previous studies identified several song production neurons[5, 6, 7, 8], how these neurons are organized to mediate song patterning was unknown. We find that male flies sing ‘simple’ trains of only one syllable or mode far from the female but complex song sequences consisting of alternations between modes when near to her. We characterize the male song circuit from the brain to the ventral nerve cord (VNC), and find that the VNC song pre-motor circuit is shaped by two key computations: mutual inhibition and rebound excitability [9] between nodes driving the two modes of song. Weak sensory input to a direct brain-to-VNC excitatory pathway (via pC2 brain and pIP10 descending neurons) drives simple song far from the female. Strong sensory input to the same pathway enables complex song production via simultaneous recruitment of P1a neuron-mediated disinhibition of the VNC song pre-motor circuit. Thus, proximity to the female effectively unlocks motor circuit dynamics in the correct sensory context. We construct a compact circuit model to demonstrate that these few computations are sufficient to replicate natural context-dependent song dynamics. These results have broad implications for neural population-level models of context-dependent behavior [10] and highlight that canonical circuit motifs [11, 12, 13] can be combined in novel ways to enable circuit flexibility required for dynamic communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.