Abstract. We discuss the dynamic and structural properties of polynomial semigroups, a natural extension of iteration theory to random (walk) dynamics, where the semigroup G of complex polynomials (under the operation of composition of functions) is such that there exists a bounded set in the plane which contains any finite critical value of any map g ∈ G. In general, the Julia set of such a semigroup G may be disconnected, and each Fatou component of such G is either simply connected or doubly connected. In this paper, we show that for any two distinct Fatou components of certain types (e.g., two doubly connected components of the Fatou set), the boundaries are separated by a Cantor set of quasicircles (with uniform dilatation) inside the Julia set of G. Important in this theory is the understanding of various situations which can and cannot occur with respect to how the Julia sets of the maps g ∈ G are distributed within the Julia set of the entire semigroup G. We give several results in this direction and show how such results are used to generate (semi) hyperbolic semigroups possessing this postcritically boundedness condition.
AbstractWe study the dynamics of semigroups of Möbius transformations on the Riemann sphere, especially their Julia sets and attractors. This theory relates to the dynamics of rational functions, rational semigroups, and Möbius groups and we compare and contrast these theories. We particularly examine Caruso’s family of Möbius semigroups, based on a random dynamics variant of the Fibonacci sequence.
We show that the Julia set of a non-elementary rational semigroup G is uniformly perfect when there is a uniform bound on the Lipschitz constants of the generators of G. This also proves that the limit set of a non-elementary Möbius group is uniformly perfect when there is a uniform bound on the Lipschitz constants of the generators of the group and this implies that the limit set of a finitely generated non-elementary Kleinian group is uniformly perfect.
Abstract. Let G be a semigroup of rational functions of degree at least two, under composition of functions. Suppose that G contains two polynomials with non-equal Julia sets. We prove that the smallest closed subset of the Riemann sphere which contains at least three points and is completely invariant under each element of G, is the sphere itself.
We introduce the concept of hereditarily non uniformly perfect sets, compact sets for which no compact subset is uniformly perfect, and compare them with the following: Hausdorff dimension zero sets, logarithmic capacity zero sets, Lebesgue 2-dimensional measure zero sets, and porous sets. In particular, we give a detailed construction of a compact set in the plane of Hausdorff dimension 2 (and positive logarithmic capacity) which is hereditarily non uniformly perfect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.