ERAP1 is an endoplasmic reticulum-resident zinc aminopeptidase that plays an important role in the immune system by trimming peptides for loading onto major histocompatibility complex proteins. Here, we report discovery of the first inhibitors selective for ERAP1 over its paralogues ERAP2 and IRAP. Compound 1 (N-(N-(2-(1H-indol-3-yl)ethyl)carbamimidoyl)-2,5-difluorobenzenesulfonamide) and compound 2 (1-(1-(4-acetylpiperazine-1-carbonyl)cyclohexyl)-3-(p-tolyl)urea) are competitive inhibitors of ERAP1 aminopeptidase activity. Compound 3 (4-methoxy-3-(N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)sulfamoyl)benzoic acid) allosterically activates ERAP1’s hydrolysis of fluorogenic and chromogenic amino acid substrates but competitively inhibits its activity toward a nonamer peptide representative of physiological substrates. Compounds 2 and 3 inhibit antigen presentation in a cellular assay. Compound 3 displays higher potency for an ERAP1 variant associated with increased risk of autoimmune disease. These inhibitors provide mechanistic insights into the determinants of specificity for ERAP1, ERAP2, and IRAP and offer a new therapeutic approach of specifically inhibiting ERAP1 activity in vivo.
The endoplasmic-reticulum aminopeptidase ERAP1 processes antigenic peptides for loading on MHC-I proteins and recognition by CD8 T cells as they survey the body for infection and malignancy. Crystal structures have revealed ERAP1 in either open or closed conformations, but whether these occur in solution and are involved in catalysis is not clear. Here, we assess ERAP1 conformational states in solution in the presence of substrates, allosteric activators, and inhibitors by small-angle X-ray scattering. We also characterize changes in protein conformation by X-ray crystallography, and we localize alternate C-terminal binding sites by chemical crosslinking. Structural and enzymatic data suggest that the structural reconfigurations of ERAP1 active site are physically linked to domain closure and are promoted by binding of long peptide substrates. These results clarify steps required for ERAP1 catalysis, demonstrate the importance of conformational dynamics within the catalytic cycle, and provide a mechanism for the observed allosteric regulation and Lys/Arg528 polymorphism disease association.
Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims antigenic peptide precursors to generate mature antigenic peptides for presentation by major histocompatibility complex class I (MHCI) molecules and regulates adaptive immune responses. ERAP1 has been proposed to trim peptide precursors both in solution and in pre-formed MHCI-peptide complexes, but which mode is more relevant to its biological function remains controversial. Here, we compared ERAP1-mediated trimming of antigenic peptide precursors in solution or when bound to three MHCI alleles, HLA-B*58, HLA-B*08 and HLA-A*02. For all MHCIpeptide combinations, peptide binding onto MHCI protected against ERAP1-mediated trimming. In only a single MHCI-peptide combination, trimming of an HLA-B*08-bound 12mer progressed at a considerable rate, albeit still slower than in solution. Results from thermodynamic, kinetic and computational analyses suggested that this 12mer is highly labile and that apparent on-MHC trimming rates are always slower than that of MHCI-peptide dissociation. Both ERAP2 and leucine aminopeptidase, an enzyme unrelated to antigen processing, could trim this labile peptide from pre-formed MHCI complexes as efficiently as ERAP1. A pseudopeptide analogue with high affinity for both HLA-B*08 and the ERAP1 active site could not promote the formation of a ternary ERAP1-MHCI-peptide complex. Similarly, no interactions between ERAP1 and purified peptide loading complex (PLC) were detected in the absence or presence of a pseudopeptide trap. We conclude that MHCI binding protects peptides from ERAP1 degradation and that trimming in solution, along with the dynamic nature of peptide binding to MHCI, are sufficient to explain ERAP1 processing of antigenic peptide precursors.
Human roseolovirus U20 and U21 are type I membrane glycoproteins that have been implicated in immune evasion by interfering with recognition of classical and non-classical MHC proteins. U20 and U21 are predicted to be type I glycoproteins with extracytosolic immunoglobulin-like domains, but detailed structural information is lacking. AlphaFold and RoseTTAfold are next generation machine-learning-based prediction engines that recently have revolutionized the field of computational three-dimensional protein structure prediction. Here, we review the structural biology of viral immunoevasins and the current status of computational structure prediction algorithms. We use these computational tools to generate structural models for U20 and U21 proteins, which are predicted to adopt MHC-Ia-like folds with closed MHC platforms and immunoglobulin-like domains. We evaluate these structural models and place them within current understanding of the structural basis for viral immune evasion of T cell and natural killer cell recognition.
Plant hemoglobins constitute three distinct groups: symbiotic, nonsymbiotic, and truncated hemoglobins. Structural investigation of symbiotic and nonsymbiotic (class I) hemoglobins revealed the presence of a vertebrate-like 3/3 globin fold in these proteins. In contrast, plant truncated hemoglobins are similar to bacterial truncated hemoglobins with a putative 2/2 α-helical globin fold. While multiple structures have been reported for plant hemoglobins of the first two categories, for plant truncated globins only one structure has been reported of late. Here, we report yet another crystal structure of the truncated hemoglobin from Arabidopsis thaliana (AHb3) with two water molecules in the heme pocket, of which one is distinctly coordinated to the heme iron, unlike the only available crystal structure of AHb3 with a hydroxyl ligand. AHb3 was monomeric in its crystallographic asymmetric unit; however, dimer was evident in the crystallographic symmetry, and the globin indeed existed as a stable dimer in solution. The tertiary structure of the protein exhibited a bacterial-like 2/2 α-helical globin fold with an additional N-terminal α-helical extension and disordered C-termini. To address the role of these extended termini in AHb3, which is yet unknown, N- and C-terminal deletion mutants were created and characterized and molecular dynamics simulations performed. The C-terminal deletion had an insignificant effect on most properties but perturbed the dimeric equilibrium of AHb3 and significantly influenced azide binding kinetics in the ferric state. These results along with the disordered nature of the C-terminus indicated its putative role in intramolecular or intermolecular interactions probably regulating protein-ligand and protein-protein interactions. While the N-terminal deletion did not change the overall globin fold, stability, or ligand binding kinetics, it seemed to have influenced coordination at the heme iron, the hydration status of the active site, and the quaternary structure of AHb3. Evidence indicated that the N-terminus is the predominant factor regulating the quaternary interaction appropriate to physiological requirements, dynamics of the side chains in the heme pocket, and tunnel organization in the protein matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.