Apoptosis is an early event of liver damage in diabetes and oxidative stress has been linked to accelerate the apoptosis in hepatocytes. Therefore, the compounds that can scavenge ROS may confer regulatory effects on high-glucose induced apoptosis. In the present study, primary rat hepatocytes were exposed to high concentration (40 mM) of glucose. At this concentration decreased cell viability and enhanced ROS generation was observed. Depleted antioxidant status of hepatocytes under high glucose stress was also observed as evident from transcriptional level and activities of antioxidant enzymes. Further, mitochondrial depolarisation was accompanied by the loss of mitochondrial integrity and altered expression of Bax and Bcl-2. Increased translocation of apoptotic proteins like AIF (Apoptosis inducing factor) & Endo-G (endonuclease-G) from its resident place mitochondria to nucleus was also observed. Cyt-c residing in the inter-membrane space of mitochondria also translocated to cytoplasm. These apoptotic proteins initiated caspase activation, DNA fragmentation, chromatin condensation, increased apoptotic DNA content in glucose treated hepatocytes, suggesting mitochondria mediated apoptotic mode of cell death. Morin, a dietary flavonoid from Psidium guajava was effective in increasing the cell viability and decreasing the ROS level. It maintained mitochondrial integrity, inhibited release of apoptotic proteins from mitochondria, prevented DNA fragmentation, chromatin condensation and hypodiploid DNA upon exposure to high glucose. This study confirms the capacity of dietary flavonoid Morin in regulating apoptosis induced by high glucose via mitochondrial mediated pathway through intervention of oxidative stress.
Endometriosis is a female reproductive disorder characterized by growth of uterine cells and tissue in distant sites. Around 2–10% of women experience this condition during reproductive age, 35–50% of whom encounter fertility issues or pain. To date, there are no established methods for its early diagnosis and treatment, other than surgical procedures and scans. It is difficult to identify the disease at its onset, unless symptoms such as infertility and/or pain are present. Determining the mechanisms involved in its pathogenesis is vital, not only to pave the way for early identification, but also for disease management and development of less invasive but successful treatment strategies. Endometriosis is characterized by cell proliferation, propagation, evasion of immunosurveillance, and invasive metastasis. This review reports the underlying mechanisms that are individually or collectively responsible for disease establishment and evolution. Treatment of endometriosis mainly involves hormone therapies, which may be undesirable or have their own repercussions. It is therefore important to devise alternative strategies that are both effective and cause fewer side effects. Use of phytochemicals may be one of them. This review focuses on pharmacological inhibitors that can be therapeutically investigated in terms of their effects on signaling pathways and/or mechanisms involved in the pathogenesis of endometriosis.
Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors.
Thyroid hormone exhibits profound effects on neural progenitor turnover, survival, maturation, and differentiation during perinatal development. Studies over the past decade have revealed that thyroid hormone continues to retain an important influence on progenitors within the neurogenic niches of the adult mammalian brain. The focus of the current review is to critically examine and summarize the current state of understanding of the role of thyroid hormone in regulating adult neurogenesis within the major neurogenic niches of the subgranular zone in the hippocampus and the subventricular zone lining the lateral ventricles. We review in depth the studies that highlight a role for thyroid hormone, in particular the TRa1 receptor isoform, in regulating progenitor survival and commitment to a neuronal fate. We also discuss putative models for the mechanism of action of thyroid hormone/TRa1 on specific stages of subgranular zone and subventricular zone progenitor development, and highlight potential thyroid hormone responsive target genes that may contribute to the neurogenic effects of thyroid hormone. The effects of thyroid hormone on adult neurogenesis are discussed in the context of a potential role of these effects in the cognitive-and moodrelated consequences of thyroid hormone dysfunction. Finally, we detail hitherto unexplored aspects of the effects of thyroid hormone on adult neurogenesis that provide impetus for future studies to gain a deeper mechanistic insight into the neurogenic effects of thyroid hormone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.