The conserved protein HMCES crosslinks to abasic (AP) sites in ssDNA to prevent strand scission and the formation of toxic dsDNA breaks during replication. Here, we report a non‐proteolytic release mechanism for HMCES‐DNA‐protein crosslinks (DPCs), which is regulated by DNA context. In ssDNA and at ssDNA‐dsDNA junctions, HMCES‐DPCs are stable, which efficiently protects AP sites against spontaneous incisions or cleavage by APE1 endonuclease. In contrast, HMCES‐DPCs are released in dsDNA, allowing APE1 to initiate downstream repair. Mechanistically, we show that release is governed by two components. First, a conserved glutamate residue, within HMCES' active site, catalyses reversal of the crosslink. Second, affinity to the underlying DNA structure determines whether HMCES re‐crosslinks or dissociates. Our study reveals that the protective role of HMCES‐DPCs involves their controlled release upon bypass by replication forks, which restricts DPC formation to a necessary minimum.
Intrinsically disordered regions (IDRs) of proteins often regulate function through interactions with folded domains. Escherichia coli single-stranded DNA binding protein SSB binds and stabilizes single-stranded DNA (ssDNA). The N-terminal of SSB contains characteristic OB (oligonucleotide/oligosaccharide-binding) fold which binds ssDNA tightly but non-specifically. SSB also forms complexes with a large number proteins via the C-terminal interaction domain consisting mostly of acidic amino acid residues. The amino acid residues located between the OB-fold and C-terminal acidic domain are known to constitute an IDR and no functional significance has been attributed to this region. Although SSB is known to bind many DNA repair protein, it is not known whether it binds to DNA dealkylation repair protein AlkB. Here, we characterize AlkB SSB interaction and demonstrate that SSB binds to AlkB via the IDR. We have established that AlkB-SSB interaction by in vitro pull-down and yeast two-hybrid analysis. We mapped the site of contact to be the residues 152-169 of SSB. Unlike most of the SSB-binding proteins which utilize C-terminal acidic domain for interaction, IDR of SSB is necessary and sufficient for AlkB interaction.
The Escherichia coli AlkB protein is a 2-oxoglutarate/Fe(II)-dependent demethylase that repairs alkylated single stranded and double stranded DNA. Immunoaffinity chromatography coupled with mass spectrometry identified RecA, a key factor in homologous recombination, as an AlkB-associated protein. The interaction between AlkB and RecA was validated by yeast two-hybrid assay; size-exclusion chromatography and standard pull down experiment and was shown to be direct and mediated by the N-terminal domain of RecA. RecA binding results AlkB–RecA heterodimer formation and RecA–AlkB repairs alkylated DNA with higher efficiency than AlkB alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.