One of the most common malignancies affecting adults with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome is the malignant peripheral nerve sheath tumor (MPNST), a highly aggressive sarcoma that typically develops from benign plexiform neurofibromas. Approximately 8–13% of individuals with NF1 will develop MPNST during young adulthood. There are few therapeutic options, and the vast majority of people with these cancers will die within 5 years of diagnosis. Despite efforts to understand the pathogenesis of these aggressive tumors, the overall prognosis remains dismal. This manuscript will review the current understanding of the cellular and molecular progression of MPNST, diagnostic workup of patients with these tumors, current treatment paradigms, and investigational treatment options. Additionally, we highlight novel areas of preclinical research, which may lead to future clinical trials. In summary, MPNST remains a diagnostic and therapeutic challenge, and future work is needed to develop novel and rational combinational therapy for these tumors.
Purpose: The response to acute and long-term arginine starvation results in a conditional adaptive metabolic reprogramming that can be harnessed for therapeutic opportunities in ASS1-negative tumors. Here, we investigate the underlying biology of priming ASS1 À tumors with arginine deiminase (ADI-PEG20) before treatment with gemcitabine (GEM) and docetaxel (DTX) in sarcoma, pancreatic cancer, and melanoma cell lines.Experimental Design: ASS1 À tumor cell lines were treated to create LTAT (long-term ADI treated) cell lines (ASS1 þ ) and used for drug combination studies. Protein expression of ASS1, dCK, RRM2, E2F1, c-MYC, and hENT1 was measured. c-MYC activity was determined, live-cell immunofluorescent studies for hENT1, uptake assays of FITC-cytosine probe, and rescue studies with a c-MYC inhibitor were all determined in the presence or absence of the ADI-PEG20:GEM:DTX.Results: In examining modulations within the pyrimidine pathway, we identified that the addition of DTX to cells treated with ADI-PEG20 resulted in translocation of stabilized c-Myc to the nucleus. This resulted in an increase of hENT1 cell-surface expression and rendered the cells susceptible to GEM. In vivo studies demonstrate that the combination of ADI-PEG20:GEM: DTX was optimal for tumor growth inhibition, providing the preclinical mechanism and justification for the ongoing clinical trial of ADI-PEG20, GEM, and DTX in sarcoma.Conclusions: The priming of tumors with ADI-PEG20 and DTX results in the stabilization of c-MYC potentiating the effect of GEM treatment via an increase in hENT1 expression. This finding is applicable to ASS1-deficient cancers that are currently treated with GEM.
Highlights d Upregulated PHGDH in osteosarcoma correlates with poor survival d Inhibiting PHGDH attenuates osteosarcoma proliferation without causing cell death d TCA cycle blockade and accumulation of metabolites results in mTORC1 activation d PHGDH inhibition combined with non-rapalog mTORC1 inhibition is synergistic
Osteosarcoma is the most common primary malignant bone tumor in children and young adults. The standard-of-care curative treatment for osteosarcoma utilizes doxorubicin, cisplatin, and high-dose methotrexate, a standard that has not changed in more than 40 years. The development of patient-specific therapies requires an in-depth understanding of the unique genetics and biology of the tumor. Here, we discuss the role of normal bone biology in osteosarcomagenesis, highlighting the factors that drive normal osteoblast production, as well as abnormal osteosarcoma development. We then describe the pathology and current standard of care of osteosarcoma. Given the complex heterogeneity of osteosarcoma tumors, we explore the development of novel therapeutics for osteosarcoma that encompass a series of molecular targets. This analysis of pathogenic mechanisms will shed light on promising avenues for future therapeutic research in osteosarcoma.
Detection of protein expression by MRI requires a high payload of Gd(III) per protein binding event. Presented here is a targeted AuDNA nanoparticle capable of delivering several hundred Gd(III) chelates to the HaloTag reporter protein. Incubating this particle with HaloTag-expressing cells produced a 9.4 contrast-to-noise ratio compared to non-expressing cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.