In bacteriophage T4, homologous genetic recombination events are catalyzed by a presynaptic filament containing stoichiometric quantities of the T4 uvsX recombinase bound cooperatively to single-stranded DNA (ssDNA). The formation of this filament requires the displacement of cooperatively bound gp32 (the T4 ssDNA-binding protein) from the ssDNA, a thermodynamically unfavorable reaction. This displacement is mediated by the T4 uvsY protein (15.8 kDa, 137 amino acids), which interacts with both uvsX- and gp32-ssDNA complexes and modulates their properties. Previously, we showed that uvsY exists as a hexamer under physiological conditions and that uvsY hexamers bind noncooperatively but with high affinity to ssDNA. We also showed that a fusion protein containing the N-terminal 101 amino acid residues of uvsY lacks interactions with uvsX and gp32 but retains both weak ssDNA-binding activity and a residual ability to stimulate uvsX-catalyzed recombination functions. Here, we present quantitative data on the oligomeric structure and ssDNA-binding properties of a closely related fusion protein designated uvsY. Sedimentation velocity and equilibrium results establish that uvsY, unlike native uvsY, behaves as a monomer in solution (M(app) = 14.2 kDa, = 2.1). Like native uvsY, uvsY binds noncooperatively to an etheno-DNA (epsilonDNA) lattice with a binding site size of 4 nucleotides/monomer; however at physiological ionic strength, the association constant for uvsY-epsilonDNA is decreased 10(4)-fold relative to native uvsY. Nevertheless, the magnitude of the salt effect on the association constant (K) is essentially unchanged between uvsY and uvsY, indicating that disruption of the C-terminus does not disrupt the electrostatic ssDNA-binding determinants found within each protomer of uvsY. Instead, the large difference in ssDNA-binding affinities reflects the loss of hexamerization ability by uvsY, suggesting that a form of intrahexamer synergism or cooperativity between binding sites within the uvsY hexamer leads to its high observed affinity for ssDNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.