Efficient control of synaptic transmission requires a rapid mechanism for terminating the actions of neurotransmitters. For amino acids and monoamines, this is achieved by their uptake into the cell by specific high-affinity transporters; acetylcholine is first broken down in the extracellular space and then choline is taken up by the cell. Because ATP is hydrolysed to adenosine by membrane-bound enzymes (ectonucleotidases) that are present in most tissues, it has been assumed that these enzymes terminate the neurotransmitter actions of ATP in the brain and in the periphery. We show here, however, that stimulation of sympathetic nerves innervating the guinea-pig vas deferens releases not only neuronal ATP, but also soluble nucleotidases that break down this ATP to adenosine, indicating that inactivation of ATP is increased by nerve activity. This release of specific nucleotidases together with ATP represents a new mechanism for terminating the actions of a neurotransmitter.
1. Experiments were carried out to quantify the stimulation-evoked overflow of catecholamines and purines (ATP, ADP, AMP and adenosine) from an in vitro sympathetic nerve-smooth muscle preparation of the guinea-pig vas deferens and from isolated bovine adrenal chromaffin cells. The superfused preparations were stimulated for 60 s with electrical field stimulation (EFS; vas deferens), dimethylphenylpiperazinium (chromaffin cells) or KCI (both preparations). 2. Samples of superfusate were taken at 10 s intervals during the 60 s stimulation period for analysis of purines by HPLC-fluorescence detection and catecholamines by HPLCelectrochemical detection. 3. The evoked overflow of catecholamines and purines from chromaffin cells occurred with the same time course and in a constant ratio of approximately 4: 1 (catecholamine to purine). These findings are compatible with the release of catecholamines and purines from a homogeneous population of exocytotic vesicles in the chromaffin cells. 4. The evoked overflow of purines and noradrenaline (NA) from the vas deferens preparation differed from the pattern of overflow from chromaffin cells and there was also some temporal disparity in the overflow of the two cotransmitters. The evoked overflow of ATP exceeded that of NA. In addition, the overflow of NA was tonic while the overflow of ATP and the other purines was phasic. 5. The EFS-evoked overflow of NA and the purines from the guinea-pig vas deferens preparation was examined after treatment with the neuronal amine-uptake inhibitors desipramine and cocaine, the a,-adrenoceptor agonist methoxamine, the a1-adrenoceptor antagonist prazosin, the a2-adrenoceptor antagonists idazoxan and yohimbine, the noradrenaline-depleting drug reserpine and the adrenergic neuron-blocking agent guanethidine. The results of these studies, together with an analysis of the metabolic degradation of extracellular ATP, indicated that the temporal disparity in the overflow of NA and ATP is unlikely to be due to differences in the clearance of the cotransmitters or to the release of purines from non-neuronal sites. These results indicate that evoked overflow of the cotransmitters accurately reflects release from nerves. This pattern of release from nerves suggests that the two cotransmitters are released from two separate populations of exocytotic vesicles.6. Superfusion of the vas deferens with exogenous e-ATP, a fluorescent derivative of ATP, revealed that there was essentially no metabolism of the nucleotide over 60 s unless the tissue was subjected to EFS. Upon EFS, there was a rapid and nearly complete degradation of ATP with a corresponding increase in ADP, AMP and adenosine. This indicates the presence of a nerve stimulation-dependent metabolism of ATP.
The effects of a number of purinoceptor agents on the release of endogenous noradrenaline from the electrically stimulated rat caudal artery were determined. Noradrenaline was quantified by high performance liquid chromatography-electrochemical detection techniques. Both P1-receptor and P2-receptor agonists reduced the release of noradrenaline; the relative order of potency being 2-chloroadenosine greater than beta, gamma methylene ATP greater than ATP greater than or equal to adenosine. The adenosine uptake inhibitor S-p-nitro-benzyl-6-thioguanosine potentiated the effects of adenosine but not those of the adenine nucleotides. This suggests that the nucleotides do not need to be converted to adenosine to produce a prejunctional inhibition of the release of noradrenaline. The P1-receptor antagonist 8-(p-sulfophenyl) theophylline reduced the inhibitory effects of both P1- and P2-receptor agonists as did the photolysis of tissues with an intense light source. The findings indicate that prejunctional purinoceptors that mediate an inhibition of the release of noradrenaline from the adrenergic nerves of the caudal artery may not be adequately defined as either P1- or P2-receptors and thus appear to represent a unique receptor. We suggest referring to these receptors as P3-purinoceptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.