We have demonstrated that consumption of certain berries and fruits such as blueberries, mixed grape and kiwifruit, was associated with increased plasma AOC in the postprandial state and consumption of an energy source of macronutrients containing no antioxidants was associated with a decline in plasma AOC. However, without further long term clinical studies, one cannot necessarily translate increased plasma AOC into a potential decreased risk of chronic degenerative disease. Preliminary estimates of antioxidant needs based upon energy intake were developed. Consumption of high antioxidant foods with each meal is recommended in order to prevent periods of postprandial oxidative stress.
Chemical analyses returned by Mars Pathfinder indicate that some rocks may be high in silica, implying differentiated parent materials. Rounded pebbles and cobbles and a possible conglomerate suggest fluvial processes that imply liquid water in equilibrium with the atmosphere and thus a warmer and wetter past. The moment of inertia indicates a central metallic core of 1300 to 2000 kilometers in radius. Composite airborne dust particles appear magnetized by freeze-dried maghemite stain or cement that may have been leached from crustal materials by an active hydrologic cycle. Remote-sensing data at a scale of generally greater than ϳ1 kilometer and an Earth analog correctly predicted a rocky plain safe for landing and roving with a variety of rocks deposited by catastrophic floods that are relatively dust-free.Mars Pathfinder (named the Sagan Memorial Station) landed on the surface of Mars on 4 July 1997 (Figs. 1 and 2), deployed a small rover (named Sojourner) (Fig. 3), and collected data from three scientific instruments [named Imager for Mars Pathfinder (IMP), ␣-proton x-ray spectrometer (APXS), and atmospheric structure investigation/meteorology package (ASI/MET)] and technology experiments (1). In the first month of surface operations the mission returned about 1.2 gigabits of data, which include 9669 lander and 384 rover images and about 4 million temperature, pressure, and wind measurements. The rover traversed a total of about 52 m in 114 commanded movements, performed 10 chemical analyses of rocks and soil, carried out soil mechanics and technology experiments, and explored over 100 m 2 of the martian surface.Pathfinder used a rover, carrying a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which provides a calibration point or "ground truth" for orbital remote-sensing observations (1, 2). The combination of spectral imaging of the landing area by the IMP, chemical analyses by the APXS aboard the rover, and close-up imaging of colors, textures, and morphologies with the rover cameras offers the potential for identifying rocks (petrology and mineralogy). Before the Pathfinder mission, knowledge of the kinds of rocks present on Mars was based mostly on the martian meteorites (all mafic igneous rocks) and inferences from Viking data (3, 4). In addition, small valley networks in heavily cratered terrain on Mars have been used to argue that the early martian environment may have been warmer and wetter (with a thicker atmosphere), at which time liquid water may have been stable (5).The Ares Vallis landing site (Fig. 4) was selected because it appeared acceptably safe and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which enable addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early martian environment and its subsequent evolution (2). In the selection of the Pathfinder landing site...
Abstract. Mars Pathfinder successfully landed at Ares Vailis on July 4, 1997, deployed and navigated a small rover about 100 m clockwise around the lander, and collected data from three science instruments and ten technology experiments. The mission operated for three months and returned 2.3 Gbits of data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. Pathfinder is the best known location on Mars, having been clearly identified with respect to other features on the surface by correlating five prominent horizon features and two small craters in lander images with those in high-resolution orbiter images and in inertial space from two-way ranging and Doppler tracking. Tracking of the lander has fixed the spin pole of Mars, determined the precession rate since Viking 20 years ago, and indicates a polar moment of inertia, which constrains a central metallic core to be between 1300 and -2000 km in radius. Dark rocks appear to be high in silica and geochemically similar to anorogenic andesites; lighter rocks are richer in sulfur and lower in silica, consistent with being coated with various amounts of dust. Rover and lander images show rocks with a variety of morphologies, fabrics and textures, suggesting a variety of rock types are present. Rounded pebbles and cobbles on the surface as well as rounded bumps and pits on some rocks indicate these rocks may be conglomerates (although other explanations are also possible), which almost definitely require liquid water to form and a warmer and wetter past. Airborne dust is composed of composite silicate particles with a small fraction of a highly magnetic mineral, interpreted to be most likely maghemite; explanations suggest iron was dissolved from crustal materials during an active hydrologic cycle with maghemite freeze dried onto silicate dust grains. Remote sensing data at a scale of a kilometer or greater and an Earth analog correctly predicted a rocky plain safe for landing and roving with a variety of rocks deposited by catstrophic floods, which are relatively dust free. The surface appears to have changed little since it formed billions of years ago, with the exception that eolian activity may have deflated the surface by -3-7 cm, sculpted wind tails, collected sand into dunes, and eroded ventifacts (fluted and grooved rocks). Pathfinder found a dusty lower atmosphere, early morning water ice clouds, and morning near-surface air temperatures that changed abruptly with time and height. Small scale vortices, interpreted to be dust devils, were observed repeatedly in the afternoon by the meteorology instruments and have been imaged.
Pyrolytic analyses suggest that Cretaceous coaly
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.