In the present study we investigated whether basic fibroblast growth factor (bFGF) plays a role in the proliferative response of smooth muscle cells (SMCs) (PDGF).1 Recently, however, Fingerle et a14 have shown that smooth muscle replication after balloon catheter denudation of the rat carotid artery occurs even in the absence of platelets. These data suggested that PDGF from platelets might not play a major role in the stimulation of smooth muscle replication seen after vascular injury. Furthermore, a comparison of two methods of experimental arterial injury showed that smooth muscle replication appears to correlate with medial damage rather than endothelial loss or adherence of platelets.5 6 These latter data led us to consider the possibility that injury-induced release of endogenous mitogens might play a pivotal role in the subsequent
Platelet-derived growth factor (PDGF), a smooth muscle cell (SMC) mitogen, and heparin-like glycosaminoglycans, known inhibitors of SMC growth and migration, were found to regulate thrombospondin synthesis and matrix deposition by cultured rat aortic SMC. The synthesis and distribution of thrombospondin was examined in growth-arrested SMCs, in PDGF-stimulated SMCs, and in heparin-treated SMCs using metabolic labeling and immunofluorescence techniques. Thrombospondin synthesis in response to purified PDGF occurred within 1 h after addition of growth factor to growth-arrested SMCs, peaked at 2 h, and returned to baseline levels by 5 h. The ind0ction of synthesis of thrombospondin by PDGF was dose dependent, with a maximal effect observed at 2.5 ng/ml. Actinomycin D (2 ~,g/ml) inhibited thrombospondin induction by PDGF, suggesting a requirement for new RNA synthesis. In the presence of heparin and related polyanions, the incorporation of thrombospondin into the SMC extracellular matrix was markedly reduced. This effect was dose dependent with a maximal effect observed at a heparin concentration of 1 ~g/ml. Heparin did not affect the ability of SMCs to synthesize thrombospondin in response to PDGF. We interpret these data to suggest a role for thrombospondin in the SMC proliferative response to PDGF and in the regulation of SMC growth and migration by glycosaminoglycans.
Addition of platelet-derived growth factor (PDGF) to growth-arrested cultured smooth muscle cells (SMC) induces the synthesis and secretion of thrombospondin (TS), a glycoprotein component of the SMC extracellular matrix in vitro. This induction occurs at PDGF concentrations that are suboptimal for a mitogenic response. In this study we examined the effect of TS on the proliferation of SMC, using a serum-free mitogenesis assay. Addition of either epidermal growth factor (EGF) or purified human platelet TS to quiescent rat vascular SMC did not substantially stimulate mitogenesis; the 30-hr nuclear labeling index increased from a mean of 7% in control cells to 20% for EGF-treated SMC and 17% for cells exposed to TS alone. However, TS and EGF acted synergistically to stimulate DNA synthesis by SMC, increasing the labeling index to 47%. The facilitative effect of TS on EGFmediated mitogenesis was inhibited by heparin, a known inhibitor of SMC growth and migration that also blocks incorporation of TS into the SMC extracellular matrix. The effect was specific for EGF; TS did not augment the response of cells to insulin or insulin-like growth factor 1. These data establish a functional role for cell-derived TS and provide evidence for the presence of an autocrine, growth-supportive mechanism involving the extracellular matrix. In addition, our experiments support the existence of a novel, heparin-sensitive SMC mitogenic pathway and suggest a mechanism whereby heparin-like molecules may inhibit SMC proliferation.
Abstract. Thrombospondin (TS) is an extracellular glycoprotein whose synthesis and secretion by vascular smooth muscle cells (SMC) is regulated by plateletderived growth factor. We have used a panel of five monoclonal antibodies against TS to determine an essential role for thrombospondin in the proliferation of cultured rat aortic SMC. All five monoclonal antibodies inhibited SMC growth in 3-d and extended cell number assays; the growth inhibition was specific for anti-TS IgG. The effects of one antibody (134.6) were examined in detail and were found to be reversable and dose dependent. Cells treated with D4.6 at 50 Ixg/ml (which resulted in a >60% reduction in cell number at day 8) were morphologically identical to control cells. D4.6-treated SMC were analyzed by flow cytofluorimetry and were found to be arrested in the G1 phase of the cell cycle. To determine a possible cellular site of action of TS in cell growth, SMC were examined by immunofluorescence using a polyclonal antibody against TS. TS was observed diffusely bound to the cell surface of serum-or platelet-derived growth factor-treated cells. The binding of TS to SMC was abolished in the presence of heparin, which prevents the binding of TS to cell surfaces and inhibits the growth of SMC. Monoclonal antibody D4.6, like hepatin, largely abolished cell surface staining of TS but had no detectable effect on the cellular distribution of fibronectin. These results were corroborated by metabolic labeling experiments. We conclude that cell surface-associated TS is functionally essential for the proliferation of vascular SMC, and that this requirement is temporally located in the G~ phase of the cell cycle. Agents that perturb the interaction of TS with the SMC surface, such as heparin, may inhibit SMC proliferation in this manner.
Although basic fibroblast growth factor (bFGF/FGF-2) is found outside cells, it lacks a conventional signal peptide sequence; the mechanism underlying its export from cells is therefore unknown. Using a transient COS-1 cell expression system, we have identified a novel membrane-associated transport pathway that mediates export of FGF-2. This export pathway is specific for the 18-kD isoform of FGF-2, is resistant to the anti-Golgi effects of Brefeldin A, and is energy-dependent. In FGF-2-transfected COS-1 cells, this ER/Golgi-independent pathway appears to be constitutively active and functions to quantitatively export metabolically-labeled 18-kD FGF-2. Co-transfection and co-immunoprecipitation experiments, using a vector encoding the cytoplasmic protein neomycin phosphotransferase, further demonstrated the selectivity of this export pathway for FGF-2. When neomycin phosphotransferase was appended to the COOH-terminus of 18-kD FGF-2, the chimera was exported. However, the transmembrane anchor sequence of the integral membrane glycoprotein (G protein) of vesicular stomatitis virus (VSV) blocked export. The chimeric protein localized to the plasma membrane with its FGF-2 domain extracellular and remained cell-associated following alkaline carbonate extraction. Taken together, the data suggest that FGF-2 is "exported" from cells via a unique cellular pathway, which is clearly distinct from classical signal peptide-mediated secretion. This model system provides a basis for the development and testing of therapeutic agents which may block FGF-2 export. Such an intervention may be of considerable use for the treatment of angiogenesis-dependent diseases involving FGF-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.