Diabetic nephropathy is the major cause of end-stage renal disease worldwide. Despite its prevalence, identification of specific factors that cause or predict diabetic nephropathy has been delayed in part by lack of reliable animal models that mimic the disease in humans. The Animal Models of Diabetic Complications Consortium (AMDCC) was created 8 years ago by the National Institutes of Health to develop and characterize models of diabetic nephropathy and other complications. This interim report details the progress made toward that goal, specifically in the development and testing of murine models. Updates are provided on validation criteria for early and advanced diabetic nephropathy, phenotyping methods, the effect of background strain on nephropathy, current best models of diabetic nephropathy, negative models and views of future directions. AMDCC investigators and other investigators in the field have yet to validate a complete murine model of human diabetic kidney disease. Nonetheless, the critical analysis of existing murine models substantially enhances our understanding of this disease process.
Peripheral mechanisms preventing autoimmunity and maintaining tolerance to commensal microbiota involve CD4+Foxp3+ regulatory T cells1,2 generated in the thymus (tTregs) or extrathymically by induction of naive CD4+Foxp3− T cells (iTregs). Prior studies suggested that the T cell receptor (TCR) repertoires of tTregs and iTregs are biased towards self and non-self antigens, respectively 3–6 but their relative contribution in controlling immunopathology, e.g. colitis and other untoward inflammatory responses triggered by different types of antigens, remains unresolved 7. The intestine, and especially the colon, is a particularly suitable organ to study this question, given the variety of self-, microbiota- and food-derived antigens to which Tregs and other T cell populations are exposed. Intestinal environments can enhance conversion to a regulatory lineage 8,9 and favor tolerogenic presentation of antigens to naive CD4+ T cells 10,11, suggesting that intestinal homeostasis depends on microbiota-specific iTregs 12–15. Here, to identify the origin and antigen-specificity of intestinal Tregs, we performed single cell as well as high-throughput (HT) sequencing of the TCR repertoires of CD4+Foxp3+ and CD4+Foxp3− T cells and analyzed their reactivity against specific commensal species. We show that tTregs constitute the majority of Tregs in all lymphoid and intestinal organs, including colon, where their repertoire is heavily influenced by the composition of the microbiota. Our results suggest that tTregs, and not iTregs, dominantly mediate tolerance to antigens produced by intestinal commensals.
Combining data from a genomic screen in 70 families with a high risk for prostate cancer (PC) with data from candidate-region mapping in these families and an additional 71 families, we have localized a potential hereditary PC-susceptibility locus to chromosome 1p36. Because an excess of cases of primary brain cancer (BC) have been observed in some studies of families with a high risk for PC, and because loss of heterozygosity at 1p36 is frequently observed in BC, we further evaluated 12 families with both a history of PC and a blood relative with primary BC. The overall LOD score in these 12 families was 3.22 at a recombination fraction (theta) of .06, with marker D1S507. On the basis of an a priori hypothesis, this group was stratified by age at diagnosis of PC. In the younger age group (mean age at diagnosis <66 years), a maximum two-point LOD score of 3.65 at straight theta = .0 was observed, with D1S407. This linkage was rejected in both early- and late-onset families without a history of BC (LOD scores -7.12 and -6.03, respectively, at straight theta = .0). After exclusion of 3 of the 12 families that had better evidence of linkage to previously described PC-susceptibility loci, linkage to the 1p36 region was suggested by a two-point LOD score of 4.74 at straight theta = .0, with marker D1S407. We conclude that a significant proportion of these families with both a high risk for PC and a family member with BC show linkage to the 1p36 region.
Abstract-For more than 50 years, investigators have unsuccessfully tried to recreate in experimental animals the cardiovascular complications of diabetes seen in humans. In particular, accelerated atherosclerosis and dilated cardiomyopathy, the major causes of mortality in patients with diabetes, have been conspicuously absent in many mouse models of the disease. Under the auspices of the NIH, the Animal Models of Diabetic Complications Consortium has worked to address this issue. This effort has focused on the development of mouse models because of the high level of genomic information available and the many well-developed genetic manipulations that may be performed in mice. Importantly, the consortium has also worked to standardize many methods to assess metabolic and cardiovascular end points for measurement of the diabetic state and its macrovascular complications. Finally, for maximum benefits from these animal models in the study of atherosclerosis and of other diabetic complications, the consortium has created a system for sharing both the animal models and the accumulated phenotypic data with the greater scientific community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.