In spite of suppression efforts, severe wildfires burn large areas of southern California grassland, coastal sage scrub, and chaparral. Such large burns may not have been characteristic prior to the initiation of fire suppression more than 70 years ago. To compare controlled with uncontrolled areas, wildfires of southern California and adjacent northern Baja California were evaluated for the period 1972 to 1980 from Landsat imagery. Fire size and location, vegetation, year, and season were recorded. It was found that suppression has divergent effects on different plant communities depending on successional processes, growth rates, fuel accumulation, decomposition rates, and length of flammability cycles. These variables establish feedback between the course of active fires, fire history, spatial configuration of flammable vegetation, and fire size. Suppression has minimal impact in coastal sage scrub and grassland. Fire control in chaparral reduces the number of fires, not burned hectarage; fires consequently increase in size, spread rate, and intensity and become uncontrollable in severe weather conditions. The Baja California chaparral fire regime may serve as a model for prescribed burning in southern California.
Aim This study appraises historical fire regimes for Californian mixed‐conifer forests of the Sierra San Pedro Mártir (SSPM). The SSPM represents the last remaining mixed‐conifer forest along the Pacific coast still subject to uncontrolled, periodic ground fire. Location The SSPM is a north–south trending fault bound range, centred on 31°N latitude, 100 km SE of Ensenada, Baja California. Methods We surveyed forests for composition, population structure, and historical dynamics both spatially and temporally over the past 65 years using repeat aerial photographs and ground sampling. Fire perimeter history was reconstructed based on time‐series aerial photographs dating from 1942 to 1991 and interpretable back to 1925. A total of 256 1‐ha sites randomly selected from aerial photographs were examined along a chronosequence for density and cover of canopy trees, density of snags and downed logs, and cover of non‐conifer trees and shrubs. Twenty‐four stands were sampled on‐the‐ground by a point‐centred quarter method which yielded data on tree density, basal area, frequency, importance value, and shrub and herb cover. Results Forests experience moderately intense understory fires that range in size to 6400 ha, as well as numerous smaller, low intensity burns with low cumulative spatial extent. SSPM forests average 25–45% cover and 65–145 trees per ha. Sapling densities were two to three times that of overstory trees. Size‐age distributions of trees ≥ 4 cm dbh indicate multi‐age stands with steady‐state dynamics. Stands are similar to Californian mixed conifer forests prior to the imposition of fire suppression policy. Livestock grazing does not appear to be suppressing conifer regeneration. Main conclusions Our spatially‐based reconstruction shows the open forest structure in SSPM to be a product of infrequent, intense surface fires with fire rotation periods of 52 years, rather than frequent, low intensity fires at intervals of 4–20 years proposed from California fire‐scar dendrochronology (FSD) studies. Ground fires in SSPM were intense enough to kill pole‐size trees and a significant number of overstory trees. We attribute long fire intervals to the gradual build‐up of subcontinuous shrub cover, conifer recruitment and litter accumulation. Differences from photo interpretation and FSD estimates are due to assumptions made with respect to site‐based (point) sampling of fire, and nonfractal fire intensities along fire size frequency distributions. Fire return intervals determined by FSD give undue importance to local burns which collectively use up little fuel, cover little area, and have little demographic impact on forests.
We revisited 68 plots of forest vegetation in the San Bernardino Mountains that had been quantitatively described in 1929‐1935, from the California Vegetation Type Map (VTM) Survey. By using the same sampling methods, we documented changes—over approximately 60 years and during a period of fire suppression management—in tree density by both species and size class. In general, we found increasing stand densities, a transformation from old‐growth age structure to young growth, and a compositional shift from Pinus ponderosa and P. jeffreyi to Abies concolor and Calocedrus decurrens. Density of trees of more than 12 cm diameter at breast height (dbh) increased by 79%, including three to ten‐fold increases in the youngest cohorts 12–66 cm dbh. The magnitude of change depended upon initial forest composition and local annual precipitation. Monotypic stands of P. jeffreyi or those initially dominated by Abies concolor showed the least change in species composition; the most xeric stands of P. jeffreyi showed the least gain in density; and mesic mixed P. ponderosa stands showed the most dramatic change in composition and density. We compared these data to records of past and present forests in the Sierra Nevada and found parallel trends, but magnified by the increased precipitation of the Sierra Nevada. We also compared VTM data from the San Bernardino Mountains to mixed conifer forests in the Sierra San Pedro Martir of Baja California. These Mexican sites and forests are ecologically similar to those in California, but they still experience unmanaged fire regimes. Californian forests of 60 years ago are remarkably similar to modern forests in the Sierra San Pedro Martir. Thus, we conclude that forest changes in the San Bernardino Mountains are primarily due to lengthening fire intervals. Forest changes as a result of fire suppression have important conservation consequences for bird species diversity in general and for Spotted Owl and Neotropical migrants in particular.
In ecosystems where fire occurrence has significant time-dependence, fire sequences should exhibit system-regulation that is distinguished by nonrandom (nonstationary), self-organizing patch dynamics related to spatially constrained fire probabilities. Exogenous factors such as fire weather, precipitation variability, and terrain alter the flammability of vegetation and encourage randomness in fire occurrence within pre-existing patch structure. In Californian chaparral, the roles of succession/fuel build-up and exogenous factors is examined by taking advantage of a 100 yr 'natural experiment' in southern California (SCA) and northern Baja California, Mexico (BCA), where factors influencing fire occurrence have been systematically altered by divergent management systems. In SCA, suppression has been practiced since 1900. In BCA, fire control was not official policy until the 1960s and has not been effectively practiced. Fire perimeter histories for 1920-1971 in SCA and BCA, reconstructed from fire history records and repeat aerial photographs, are compared for fire frequency (events/area), size, rotation periods, stand age structure, ignition rates, weather, burning season, and drought. Landscape-scale fire rotation periods are long (≈70 yr) regardless of management policies because fire occurrence is driven by the gradual development of fire hazard during succession, produced by small annual increments of growth and litterfall, as well as by high fuel moisture in evergreen shrubs. Without fire control frequent fires establish fine-grained mosaics. Fire control reduces fire frequencies, increases fire size, and encourages coarse-scale patch structure. Patch dynamics exhibit evidences of nonrandom turnover. Fire size distributions reflect the nearest-neighbor distances between patches below some age-dependent combustion threshold (CT) in the patch mosaic that resist the spread of fires in stands older than CT. Regional burn rates are poorly related to fire frequency, ignition rates, drought, and terrain. The small size of fires in BCA may be reinforced by interactions between fire and pre-existing, fine-grained patch structure, and by random fire occurrence in the probability distributions of fire weather and climate. In SCA, fires are nonrandomly restricted by fire control to extreme weather.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.