Background
Adipose tissue expands in response to excess caloric intake, but individuals prone to deposit visceral (VIS) instead of subcutaneous (SQ) adipose tissue have higher risk of metabolic disease. The role of angiogenesis in the expandability of human adipose tissue depots is unknown. The objective of this study was to measure angiogenesis in VIS and SQ adipose tissue, and to establish whether there is a relationship between obesity, metabolic status and the angiogenic properties of these depots.
Methods and results
Angiogenic capacity was determined by quantifying capillary branch formation from human adipose tissue explants embedded in Matrigel, and capillary density was assessed by immunohistochemistry. SQ adipose tissue had a greater angiogenic capacity compared to VIS, even after normalization to its higher initial capillary density. Gene array analyses revealed significant differences in expression of angiogenic genes between depots, including an increased SQ expression of ANGPTL4, which is pro-angiogenic in an adipose tissue context. SQ capillary density and angiogenic capacity decreased with morbid obesity, and SQ, but not VIS, adipose tissue angiogenic capacity negatively correlated with insulin sensitivity.
Conclusions
These data imply that SQ adipose tissue has a higher capacity to expand its capillary network compared to VIS, but this capacity decreases with morbid obesity. The decrease correlates with insulin resistance, suggesting that impairment of SQ adipose tissue angiogenesis may contribute to metabolic disease pathogenesis.
Background
Obesity is a strong risk factor for resistance to insulin-mediated glucose disposal, a precursor of type 2 diabetes and other disorders.
Objectives
To identify molecular pathways that may cause such obesity-associated insulin resistance in human subjects, we exploited the fact that not all obese individuals are prone to insulin resistance. Thus the degree of obesity as a variable was removed by studying morbidly obese human subjects of similar BMI values who are insulin-sensitive versus insulin-resistant.
Setting
University Medical Center, United States
Methods
Combining gene expression profiling with computational approaches, we determined the global gene expression signatures of omental and subcutaneous adipose tissue samples obtained from similarly obese patients undergoing gastric bypass surgery.
Results
Gene sets related to chemokine activity and chemokine receptor-binding were identified as most highly expressed in the omental tissue from insulin-resistant compared to insulin sensitive subjects, independent of BMI. These upregulated genes included chemokines CCL2, CCL3, CCL4, CCL18 and IL8/CXCL8, and were not differentially expressed in subcutaneous adipose tissues between the two groups of subjects. Strikingly, insulin resistance, but not BMI, was associated with increased macrophage infiltration in the omental adipose tissue, as was adipocyte size, in these morbidly obese subjects.
Conclusions
Our findings demonstrate that inflammation of omental adipose tissue is strongly associated with insulin resistance in human obesity even in subjects with similar BMI values. Increased omental fat mass may contribute to the amplified inflammatory response observed in this population.
The study demonstrated a 65 %EWL and 85% success rate at 1 year in our bariatric surgery program. Our finding that most pre-surgery co-morbidities and depression did not predict weight loss may have implications for pre-surgery screening.
The 26S proteasome degrades proteins that regulate transcription factor activation, cell cycle progression, and apoptosis. In cancer, this may allow for uncontrolled cell division, promoting tumor growth, and spread. We examined whether selective inhibition of the 26S proteasome with PS-341, a dipeptide boronic acid analogue, would block proliferation and induce apoptosis in human pancreatic cancer. Proteasome inhibition significantly blocked mitogen (FCS) induced proliferation of BxPC3 human pancreatic cancer cells in vitro, while arresting cell cycle progression and inducing apoptosis by 24 h. Accumulation of p21(Cip1-Waf-1), a cyclin dependent kinase (CDK) inhibitor normally degraded by the 26S proteasome, occurred by 3 h and correlated with cell cycle arrest. When BxPC3 pancreatic cancer xenografts were established in athymic nu/nu mice, weekly administration of 1 mg/kg PS-341 significantly inhibited tumor growth. Both cellular apoptosis and p21(Cip1-Waf-1) protein levels were increased in PS-341 treated xenografts. Inhibition of tumor xenograft growth was greatest (89%) when PS-341 was combined with the tumoricidal agent CPT-11. Combined CPT-11/PS-341 therapy, but not single agent therapy, yielded highly apoptotic tumors, significantly inhibited tumor cell proliferation, and blocked NF-kappaB activation indicating this systemic therapy was effective at the cancer cell level. 26S proteasome inhibition may represent a new therapeutic approach against this highly resistant and lethal malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.